
Nesting in WRF

Dave Gill

Super Cell QSS

2-domain run
 CG
 FG

Feedback: on

Split storm

Overview
•  Nesting: Journalism 101: Who, what, why, when, where
•  Domains

•  OK vs semi-OK vs not OK at all
•  Variable staggering CG to FG
•  Lateral forcing
•  Feedback
•  Masked interpolation
•  Time stepping for multi-domain

•  Concurrent vs Offline Nesting
•  Registry

•  U D F S
•  i2

•  Some suggestions
•  Performance
•  Location, location, location
•  Inside out, start with inner domain
•  Go big or go home
•  Map factors, stability, time step, domain size

Nesting Basics - What is a nest

•  A nest is a finer-resolution domain used during a model run. This
domain may be embedded simultaneously within a coarser-
resolution (parent) model run, or run independently as a separate
model forecast.

•  The nest covers a portion of the parent domain, and is driven along
its lateral boundaries by the parent domain.

•  Nesting enables running at finer resolution without the following
problems:

•  Uniformly high resolution over a large domain - prohibitively
expensive

•  High resolution for a very small domain with mismatched time
and spatial lateral boundary conditions

Nesting Basics

•  One-way nesting via multiple model forecasts
•  One-way nesting with a single model forecast, without feedback

•  One-way/two-way nesting with a single input file, all fields
interpolated from the coarse grid

•  One-way/two-way nesting with multiple input files, each domain
with a full input data file

•  One-way/two-way nesting with the coarse grid data including all
meteorological fields, and the fine-grid domains including only the
static files

•  One-way/two-way nesting with a specified move for each nest
•  One-way/two-way nesting with an automatic move on the nest

determined through (usually) 700 hPa low tracking

Two nests on the same “level”, with a common
parent domain

Parent
domain

Nest #2

Nest #1

Two levels of nests, with nest #1 acting as the parent

for nest #2

Parent
domain

Nest #2
Nest #1

These are all OK

1

2
3

4

5
7

Telescoped to any depth
Any number of siblings

6

Not OK for 2-way

1

2

3

Child domains may not have overlapping points in the
parent domain (1-way nesting excluded).

Not OK either

1

2

3

4

Domains have one, and only one, parent -
(domain 4 is NOT acceptable even with 1-way nesting)

WRF Coarse-Fine Overlap

•  The rectangular fine grid is coincident with a portion of the high-
resolution grid that covers the entire coarse grid cell

Coarse Grid Staggering

i_parent_start
j_parent_start

WRF Coarse-Fine Overlap

•  The nested domain can be placed anywhere within the parent domain
and the nested grid cells will exactly overlap the parent cells at the
coincident cell boundaries.

•  Coincident parent/nest grid points eliminate the need for complex,
generalized remapping calculations, and enhances model performance
and portability.

Tasks of the Initialization Program
Input Data for real.exe

Lateral Smoothing

First spec_bdy rows and
columns interpolated from CG

Second spec_bdy rows and
columns weighted avg from CG
and the FG domains

Coarse Grid Staggering 3:1 Ratio

CG … 30 31 32 33 34

Starting!
Location!
I = 31!

Coarse Grid Staggering 3:1 Ratio

Feedback:!
U : column!
V : row!
T : cell!

Coarse Grid Staggering 3:1 Ratio

Feedback:!
U : column!
V : row!
T : cell!

 1

 2

 3

 1

Coarse Grid Staggering 3:1 Ratio

Feedback:!
U : column!
V : row!
T : cell!

 1 2 3

 1

Coarse Grid Staggering 3:1 Ratio

Feedback:!
U : column!
V : row!
T : cell!

 1 2 3

 4 5 6

 7 8 9

 1

Coarse Grid Staggering 3:1 Ratio

Feedback:!
U : column!
V : row!
T : cell!

 1 2 3

 4 5 6

 7 8 9

 1

Able to deal with
these average values
since dealing with
continuous and
unmasked fields!

Masked Feedback
Center point – Odd preference

Masked Feedback
Center point – Odd preference

Masked Interpolation

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

The order of
integration is

D1

D2 D2

D3 D3 D3

D4 D4 D4

D5 D5 D5

DD

D1

D2

1

2

3,4,5

6,7,8

9,10,11

D3

D4
D5

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

1
2
3,4,5
6,7,8
9,10,11

12
13,14,15
16,17,18
19,20,21

22
23,24,25
26,27,28
29,30,31

Concurrent Nesting with n Inputs

wrf d01
input

wrf d01
bdy

wrf d02
input

WPS
CG

WPS
FG

real.exe
CG: multiple times
FG: one time

wrf.exe
WRF
CG + FG

Coarse and fine grid domains must
start at the same time, fine domain may
end at any time

Feedback may be shut off to produce
a 1-way nest (cell face and cell average)

Any integer ratio for coarse to fine is
permitted, odd is usually chosen for
real-data cases

Options are available to ingest only the
static fields from the fine grid, with the
coarse grid data horizontally interpolated
to the nest

Concurrent Nesting with n Inputs

wrf d01
input

wrf d01
bdy

wrf d02
input

WPS
CG

WPS
FG

real.exe
CG: multiple times
FG: one time

wrf.exe
WRF
CG + FG

Restricted vertical nesting

Usually the same physics are run on all
of the domains (excepting cumulus)

The grid distance ratio is not strictly tied
to the time step ratio

Topography smoothly ramps from coarse
grid to the fine grid along the interface
along the nest boundary

All fine grids must use the nested lateral
boundary condition

Concurrent Nesting with 1 Input
WPS
CG

real CG
multi-times

wrf CG+FG
full fcst

wrf
input

wrf
bdy

ideal CG
Single time

wrf CG+FG
full fcst

wrf
input

Concurrent Nesting with 1 Input
WPS
CG

real CG
multi-times

wrf CG+FG
full fcst

wrf
input

wrf
bdy

A single namelist column entry is tied to each
domain

The horizontal interpolation method, feedback,
and smoothing are largely controlled through
the Registry file

ndown: Offline Nesting
WPS
CG

WPS
FG

real CG
multi-times

real FG
single time

wrf CG
full fcst

ndown
CG fcst +
FG initial

wrf FG
full fcst

wrf
input

wrf
bdy

wrf
input

wrf
out

wrf
input

wrf
bdy

Separate WRF forecast runs, separate
real pre-processor runs, intervening
ndown.exe run

Same restrictions for horizontal nest ratios

Can start at any time that an output time
exists from the parent grid

Boundary condition frequency for the
fine grid is usually the same as the coarse
grid output frequency

ndown: Offline Nesting
WPS
CG

WPS
FG

real CG
multi-times

real FG
single time

wrf CG
full fcst

ndown
CG fcst +
FG initial

wrf FG
full fcst

wrf
input

wrf
bdy

wrf
input

wrf
out

wrf
input

wrf
bdy

May choose to have the parent WRF model
moist and scalar information used for the
lateral boundary conditions.

Do not change the physics options between
the WRF forecasts.

have_bcs_moist
have_bcs_scalar

ndown: Offline Nesting
WPS
CG

WPS
FG

real CG
multi-times

real FG
single time

wrf CG
full fcst

ndown
CG fcst +
FG initial

wrf FG
full fcst

wrf
input

wrf
bdy

wrf
input

wrf
out

wrf
input

wrf
bdy

May have vertical nesting on the fine grid
based on a constant vertical refinement
factor (in eta space)

vert_refine_fact

Typical refinement factors 2-5 (be careful,
as this refinement takes place in the
lowest eta layers also)

West East Cross section
Shaded: v; Contour: theta

6-h Forecast, from Mohamed Moustaoui

Standard Levels 3x Refinement

Vertical Nesting

Starting with V3.7, the model allows different numbers of
vertical levels on different domains. Usually, this is to
include more levels on the inner domains.

This is a new feature and needs to be handled cautiously.

Restrictions:

 Only RRTM radiation scheme is available
 Real data cases only
 Static nest locations only

Vertical Nesting

 &domains
 max_dom = 2,
 e_vert = 35, 45,
 vert_refine_method = 0, 2,

Vertical Nesting
&domains
eta_levels(1:35) = 1., 0.993, 0.983, 0.97, 0.954, 0.934,
 0.909, 0.88, 0.8406663, 0.8013327,
 0.761999, 0.7226653, 0.6525755,
 0.5877361, 0.5278192, 0.472514,
 0.4215262, 0.3745775, 0.3314044,
 0.2917579, 0.2554026, 0.2221162,
 0.1916888, 0.1639222, 0.1386297,
 0.1156351, 0.09525016, 0.07733481,
 0.06158983, 0.04775231, 0.03559115,
 0.02490328, 0.0155102, 0.007255059, 0.

Vertical Nesting
&domains
eta_levels(36:81) = 1.0000, 0.9946, 0.9875, 0.9789, 0.9685,
 0.9562, 0.9413, 0.9238, 0.9037, 0.8813,
 0.8514, 0.8210, 0.7906, 0.7602, 0.7298,
 0.6812, 0.6290, 0.5796, 0.5333, 0.4901,
 0.4493, 0.4109, 0.3746, 0.3412, 0.3098,
 0.2802, 0.2524, 0.2267, 0.2028, 0.1803,
 0.1593, 0.1398, 0.1219, 0.1054, 0.0904,
 0.0766, 0.0645, 0.0534, 0.0433, 0.0341,
 0.0259, 0.0185, 0.0118, 0.0056, 0.

What are those “usdf” Options

state real u ikjb dyn_em 2 X \
i01rhusdf=(bdy_interp:dt) \

 "U" "x-wind component" "m s-1”

“f” defines what lateral boundary forcing routine (found in
share/interp_fcn.F) is utilized, colon separates the
additional fields that are required (fields must be
previously defined in the Registry)

Called at beginning of each set of child time steps, has parent

and child information available – could be used with SST.

What are those “usdf” Options
state real landmask ij misc 1 - \
i012rhd=(interp_fcnm)u=(copy_fcnm)\
"LANDMASK" "LAND MASK (1=LAND, 0=WATER)"

“u” and “d” define which feedback (up-scale) and horizontal

interpolation (down-scale) routines (found in share/
interp_fcn.F) are utilized

Default values (i.e. not a subroutine name listed in the

parentheses) assume non-masked fields

What are those “usdf” Options
state real ht ij misc 1 - i012rhdus "HGT" \

"Terrain Height" "m"

“s” if the run-time option for smoothing is activated, this field is

to be smoothed - only used for the parent of a nest domain,
smoothing is in the area of the nest, excluding the outer row
and column of the nest coverage

Whether or not smoothing is enabled is a run-time option from

the namelist – smoothing can always be turned off without
introducing any problems

Special IO Stream #2 Fields
state real msft ij misc 1 - \

i012rhdu=(copy_fcnm) "MAPFAC_M" \
 "Map scale factor on mass grid" "”

state real msfu ij misc 1 X \

i012rhdu=(copy_fcnm) "MAPFAC_U" \
 "Map scale factor on u-grid" "”

state real msfv ij misc 1 Y \

i012rhdu=(copy_fcnm) "MAPFAC_V" \
 "Map scale factor on v-grid" ""

Nesting Suggestions – CG Size

•  The size of the nested domain may need to be
chosen with computing performance in mind.

•  Assuming a 3:1 ratio and the same number of grid
cells in the parent and nest domains, the fine grid
will require 3x as many time steps to keep pace
with the coarse domain.

•  A simple nested domain forecast is approximately
4x the cost of just the coarse domain.

•  Don’t be cheap on the coarse grid, doubling the
CG points results in only a 25% nested forecast
time increase.

Nesting Suggestions – Cost

•  Example: assume 3:1 nest ratio

If the nest has the same number of grid cells, then

the amount of CPU to do a single time step for a
coarse grid (CG) and a fine grid step (FG) is
approximately the same.

Since the fine grid (3:1 ratio) has 1/3 the grid

distance, it requires 1/3 the model time step.
Therefore, the FG requires 3x the CPU to catch up
with the CG domain.

Nesting Suggestions – Same Area

•  Example: assume 3:1 nest ratio

If you try to cover the SAME area with a FG domain

as a CG domain, you need (ratio)^2 grid points.

With the associated FG time step ratio, you require a

(ratio)^3.

With a 3:1 ratio, a FG domain covering the same

area as a CG domain requires 27x CPU.

Nesting Suggestions – Same Area

•  Example: assume 10:1 nest ratio

To change your test case from 50-km resolution to a
finer 5-km resolution would be at least 1000x more
expensive.

Nesting Suggestions - Location
•  The minimum distance

between the nest boundary
and the parent boundary is
FOUR grid cells

•  You should have a
larger buffer zone

•  It is not unreasonable to
have approximately 1/3 of
your coarse-grid domain
surrounding each side of
your nest domain

1

2

1/3 1/3 1/3

Nesting Suggestions – Inside Out

•  Start with designing your inner-most domain. For
a traditional forecast, you want everything
important for that forecast to be entirely contained
inside the domain.

•  Then start adding parent domains at a 3:1 or 5:1
ratio. A parent should not have a smaller size (in
grid points). Keep adding domains until the most
coarse WRF grid has no more than a 3:1 to 5:1
ratio to the external model (first guess) data.

Nesting Suggestions – Big CG

•  Larger domains tend to be better than smaller
domains.

•  A 60 m/s parcel moves at > 200 km/h. A 2-km
resolution grid with 100x100 grid points could
have all of the upper-level initial data swept out of
the domain within a couple of hours.

Nesting Suggestions – CG dt

Map factors > 1.6

Nesting Suggestions – CG dt

•  The most-coarse domain may have a geographic extent
that causes large map factors.

 time_step = 300 (BLOWS UP)
 dx = 50000,16666,5555
 grid_id = 1, ,2 ,3
 parent_id = 0, ,1 ,2
 parent_grid_ratio = 1, ,3 ,3
 parent_time_step_ratio = 1, ,3 ,3

Nesting Suggestions – CG dt

•  Reducing the time step so that the coarse grid is stable
makes the model too expensive. 1.5x more

 time_step = 200 (STABLE, PRICEY)
 dx = 50000,16666,5555
 grid_id = 1, ,2 ,3
 parent_id = 0, ,1 ,2
 parent_grid_ratio = 1, ,3 ,3
 parent_time_step_ratio = 1, ,3 ,3

Nesting Suggestions – CG dt

•  Only reduce the time step on the coarse grid, and keep the
fine grid time steps at their approx original values.

 time_step = 200 (STABLE, CHEAP)
 dx = 50000,16666,5555
 grid_id = 1, ,2 ,3
 parent_id = 0, ,1 ,2
 parent_grid_ratio = 1, ,3 ,3
 parent_time_step_ratio = 1, ,2 ,3

Nesting Suggestions – CG dt

Domain
Number

Original
Time Step (s)
UNSTABLE

Safe
Time Step (s)
STABLE
EXPENSIVE

BETTER
Time Step (s)
STABLE
CHEAPER

Domain 01
PARENT

300

200

200

Domain 02
CHILD

100

66.6

100

time_step = 300 (UNSTABLE)
parent_time_step_ratio = 1, ,3 ,3

Nesting Suggestions – CG dt

Domain
Number

Original
Time Step (s)
UNSTABLE

Safe
Time Step (s)
STABLE
EXPENSIVE

BETTER
Time Step (s)
STABLE
CHEAPER

Domain 01
PARENT

300

200

200

Domain 02
CHILD

100

66.6

100

time_step = 200 (STABLE, PRICEY)
parent_time_step_ratio = 1, ,3 ,3

Nesting Suggestions – CG dt

Domain
Number

Original
Time Step (s)
UNSTABLE

Safe
Time Step (s)
STABLE
EXPENSIVE

BETTER
Time Step (s)
STABLE
CHEAPER

Domain 01
PARENT

300

200

200

Domain 02
CHILD

100

66.6

100

time_step = 200 (STABLE, CHEAP)
parent_time_step_ratio = 1, ,2 ,3

Nesting Suggestions – CG dt

•  Model time step is always proportional to the time step of
the most coarse grid.

•  The coarse grid is the only grid impacted with large map
factors: dt(s) = 6*dx(km)

•  The nominal grid distance always needs to be scaled:
 dt(s) = 6*dx(km) / MAX (map factor in domain)

•  Reducing the coarse grid time step does not significantly
reduce model performance if you can tweak the time step
ratio.

Nesting Suggestions – CG dt

•  The take away:

•  The time step ratio and grid distance ratio are not

necessarily identical, and may used effectively when large
map factors in the coarse grid domain force a time step
reduction for stability.

•  If map factors are causing stability troubles, it is usually
only the most coarse grid that is impacted since the fine
grid is usually in the middle of the domain.

Nesting Suggestions - Wrap Up

•  Set up domain first to provide good valid forecast,
then deal with efficiency

•  Selecting a set of domains with the reason “it is all
I can afford” gets you into trouble

•  Numerically stable and computationally expedient
do not imply scientifically or physically valid

Review
•  Nesting: Journalism 101: Who, what, why, when, where
•  Domains

•  OK vs semi-OK vs not OK
•  Variable staggering CG to FG
•  Lateral forcing
•  Feedback
•  Masked interpolation
•  Time stepping for multi-domain

•  Concurrent vs Offline Nesting
•  Registry

•  U D F S
•  i2

•  Some suggestions
•  Performance
•  Location, location, location
•  Inside out, start with inner domain
•  Go big or go home
•  Map factors, stability, time step, domain size

Nesting PART 2

•  Nesting steps inside of WRF

•  Available source code options

•  Choosing the nested interpolation type

•  Building automatically accessed routines

Nesting Sequence Inside of WRF

•  The WRF model always has the parent domain integrate a
single time step, then the code checks to see if a child domain
exists (valid time)

•  The parent has current (t+dt) information stored in the _2
variables and the information from the previous time step
stored in the _1 variables (for example t_1, t_2, etc).

•  These two time levels of data allow the lateral boundary conditions
for the fine grid to be handled similarly to that of the most coarse
grid: an interpolated initial value of the nest (the old time, _1)
and a tendency to get to the next time are required

Nesting Sequence Inside of WRF

•  The initial value and the tendency from the parent domain are
horizontally interpolated onto the child domain!

•  For a nest ratio of 3:1, then three child time steps are required to
get to the parent current time. The tendency during these three
child time steps along the lateral boundaries remains
constant!

•  At the end of the last child time step required to get to the parent’s
current time, for a two-way nest, the child information feeds
back to the parent domain

Available Source Code Options

•  The nesting inside of WRF requires a few types of routines:
•  Horizontally interpolate the parent to the child
•  Generate the lateral boundary conditions for the child
•  Feed back information from the child to the parent
•  Optionally smooth the area in the parent covered by the child

domain after feedback

•  All of these options are selected through the Registry!

Available Source Code Options

•  In the Registry, the nesting options are located with the I/O flags

Latitude: du=(copy_fcnm)!
U: usdf=(bdy_interp:dt)!
TSK: d=(interp_mask_field:lu_index,iswater)u=(copy_fcnm) !
LANDMASK: d=(interp_fcnm_imask)u=(copy_fcnm)!
SST: d=(interp_mask_field:lu_index,iswater)!
!

•  but could be as complicated as
SST: d=(interp_mask_field:lu_index,iswater)\
f=(p2c_mask:lu_index,tslb,num_soil_layers,iswater)!

Available Source Code Options

•  The syntax for horizontal interpolation from the parent to the child
is “d” for “down”!

d=(subroutine_name: optional arguments, comma separated)!
!

•  Default is interp_fcn

•  The “d” option is handled only once per domain, at
initialization

Available Source Code Options

•  The syntax for feedback from the child back to the parent is “u”
for “up”!

d=(subroutine_name: optional arguments, comma separated)!
!

•  Default is copy_fcn

•  The “u” is processed in the WRF model after the last in the
sequence of required fine grid time steps to bring the child
domain up to the same time as the parent!

Available Source Code Options

•  The syntax for the lateral boundary tendency computation is “f”
for LBC “forcing”

f=(subroutine_name: optional arguments – typically time step)!
!

•  Default is interp_bdy (but specified because the time step
argument is always used)

•  Any domain that would like to have the child domain given
information at the end of each parent time step (such as
lateral boundaries), may use the “f=()” Registry option.

•  Some developers have subroutines that interpolate a child
domain from the parent at EACH parent time step (SSTs
and perturbations from SKEBS are examples)

!

Choosing the Nested Interpolation Type

•  At run-time, the user may select the order of the horizontal
interpolation to be used

 &domains!
 interp_method_type = 1: bilinear!
 2: sint!
 3: nearest neighbor!
 4: quadratic!
 /!

•  The same order/type of interpolator is used the initial horizontal
interpolation and the subsequent lateral boundary interpolation

Building Automatically Accessed Routines

•  The registry program manufactures a default template for
the subroutine call.

SUBROUTINE interp_fcn & SUBR CALL !
 (cfld, & CG !
 cids, cide, ckds, ckde, cjds, cjde, & CG DIMS I !
 cims, cime, ckms, ckme, cjms, cjme, & CG DIMS J!
 cits, cite, ckts, ckte, cjts, cjte, & CG DIMS K!
 nfld, & FG!
 nids, nide, nkds, nkde, njds, njde, & FG DIMS I!
 nims, nime, nkms, nkme, njms, njme, & FG DIMS J!
 nits, nite, nkts, nkte, njts, njte, & FG DIMS K!
 shw, & STENCIL WIDTH!
 imask, & NEST MASK!
 xstag, ystag, & STAGGERING X Y!
 ipos, jpos, & NEST START LOCATION!
 nri, nrj) NEST RATIO I J!

Building Automatically Accessed Routines

•  The lateral boundary routines (the “f=()” option) always get the
eight boundary arrays appended (total of 16 arrays, 8 for parent, 8
for child).

Building Automatically Accessed Routines

SUBROUTINE bdy_interp (&
 cfld, cids, cide, ckds, ckde, cjds, cjde, cims, cime, ckms, ckme, cjms, cjme, &
 cits, cite, ckts, ckte, cjts, cjte, &
 nfld, nids, nide, nkds, nkde, njds, njde, nims, nime, nkms, nkme, njms, njme, &
 nits, nite, nkts, nkte, njts, njte, &
 shw, imask, xstag, ystag, ipos, jpos, nri, nrj, &

 cbdy_xs, nbdy_xs, & ! CG FG X start
 cbdy_xe, nbdy_xe, & ! CG FG X end
 cbdy_ys, nbdy_ys, & ! CG FG Y start
 cbdy_ye, nbdy_ye, & ! CG FG Y end
 cbdy_txs, nbdy_txs, & ! TEND X start
 cbdy_txe, nbdy_txe, & ! TEND X end
 cbdy_tys, nbdy_tys, & ! TEND Y start
 cbdy_tye, nbdy_tye, & ! TEND Y end
 cdt, ndt) ! CG FG dt

Building Automatically Accessed Routines

•  Any extra variables are ALWAYS tagged on to the end of the
subroutine, and always in pairs: parent and child (for example:
time step, land mask, etc).

Building Automatically Accessed Routines

Registry.EM_COMMON example:

state real TGR_URB2D ij misc 1 - \
rd=(interp_mask_land_field:lu_index)u=(copy_fcnm) \
"TGR_URB" "URBAN GREEN ROOF SKIN TEMPERATURE"
"K”

Building Automatically Accessed Routines

Manufactured call to this routine:
SUBROUTINE interp_mask_land_field (&
 enable, &
 cfld, &
 cids, cide, ckds, ckde, cjds, cjde, &
 cims, cime, ckms, ckme, cjms, cjme, &
 cits, cite, ckts, ckte, cjts, cjte, &
 nfld, &
 nids, nide, nkds, nkde, njds, njde, &
 nims, nime, nkms, nkme, njms, njme, &
 nits, nite, nkts, nkte, njts, njte, &
 shw, imask, xstag, ystag, ipos, jpos, nri, nrj, &
 clu, nlu)!

Building Automatically Accessed Routines

•  The user may place the new routine (called by the name given in
the Registry file) in the share/interp_fcn.F file

Nesting PART 2

•  Nesting steps inside of WRF

•  Available source code options

•  Choosing the nested interpolation type

•  Building automatically accessed routines

Nesting PART 2

•  Nesting steps inside of WRF

•  Available source code options

•  Choosing the nested interpolation type

•  Building automatically accessed routines

Always, the parent domain
completes a time step,
before starting a child time
step

Always, a test is made for a
valid child domain before
taking a parent domain step

Nesting PART 2

•  Nesting steps inside of WRF

•  Available source code options

•  Choosing the nested interpolation type

•  Building automatically accessed routines

U: up
Feed back FG to CG at the
end of each FG sequence

D: down
Horizontally interpolate CG
to FG at the instantiation of
each FG domain

Nesting PART 2

•  Nesting steps inside of WRF

•  Available source code options

•  Choosing the nested interpolation type

•  Building automatically accessed routines

F: forcing

1)  Primarily for lateral

boundary forcing

2)  Also used for SST (CG
to FG), as these routines
are called at the
beginning of each FG
sequence

Nesting PART 2

•  Nesting steps inside of WRF

•  Available source code options

•  Choosing the nested interpolation type

•  Building automatically accessed routines

Users may choose different
horizontal interpolators,
though mostly required to be
the same for all variables
during a single run

Nesting PART 2

•  Nesting steps inside of WRF

•  Available source code options

•  Choosing the nested interpolation type

•  Building automatically accessed routines

Several types of routines are
automatically manufactured
by the registry program,
including most nesting
operations

Users may develop their
own nesting features by
following the assumed
calling structure

