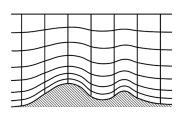
Dynamics: Introduction

The Advanced Research WRF (ARW) Dynamics Solver

- 1. Terrain, vertical coordinate
- 2. Equations and variables
- 3. Time integration scheme
- 4. Grid staggering
- 5. Advection (transport) and conservation
- 6. Time step parameters
- 7. Filters
- 8. Map projections and global configuration

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)


Dynamics: 1. Terrain, vertical coordinate

Hydrostatic pressure π

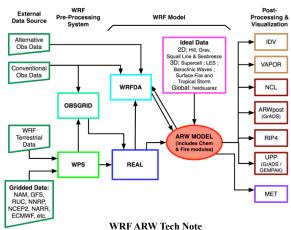
Column mass $\mu = \pi_s - \pi_t$ (per unit area)

Vertical coordinate $\eta = \frac{(\pi - \pi_t)}{..}$

 $\mu \Delta \eta = \Delta \pi = g \rho \Delta z$ Layer mass (per unit area)

Conserved state (prognostic) variables:

 μ , $U = \mu u$, $V = \mu v$, $W = \mu w$, $\Theta = \mu \theta$


Non-conserved state variable: $\phi = gz$

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: Introduction

WRF Modeling System Flow Chart

A Description of the Advanced Research WRF Version 3 http://www.mmm.ucar.edu/wrf/users/pub-doc.html

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 2. Equations and variables – moist equations

Moist Equations:

Moist Equations:
$$\frac{\partial U}{\partial t} + \alpha \mu_d \frac{\partial p}{\partial x} + \frac{\alpha}{\alpha_d} \frac{\partial p}{\partial \eta} \frac{\partial \phi}{\partial x} = -\frac{\partial Uu}{\partial x} - \frac{\partial \Omega u}{\partial \eta}$$
$$\frac{\partial W}{\partial t} + g \left(\mu_d - \frac{\alpha}{\alpha_d} \frac{\partial p}{\partial \eta} \right) = -\frac{\partial Uw}{\partial x} - \frac{\partial \Omega w}{\partial \eta}$$
$$\frac{\partial \mu_d}{\partial t} + \frac{\partial U}{\partial x} + \frac{\partial \Omega}{\partial \eta} = 0$$
$$\frac{\partial \Theta}{\partial t} + \frac{\partial U\theta}{\partial x} + \frac{\partial \Omega \Theta}{\partial \eta} = \mu Q$$
$$\frac{d\phi}{dt} = gw$$
$$\frac{\partial (\mu_d q_{v,l})}{\partial t} + \frac{\partial (Uq_{v,l})}{\partial x} + \frac{\partial (\Omega q_{v,l})}{\partial \eta} = \mu Q_{v,l}$$
Diagnostic relations:
$$\frac{\partial \phi}{\partial \eta} = -\alpha_d \mu_d, p = \left(\frac{R_d \Theta_m}{p} \right)^\gamma, \ \Theta_m = \Theta \left(1 + \frac{R_v}{R_v} q_v \right)$$

WRF Tutorial July 2016

Dynamics: 2. Equations and variables – velocities

Vertical momentum eqn.

$$\frac{\partial W}{\partial t} + g \left(\mu_d - \frac{\alpha}{\alpha_d} \frac{\partial p}{\partial \eta} \right) = -\frac{\partial Uw}{\partial x} - \frac{\partial \Omega w}{\partial \eta}$$

Subscript d denotes dry, and

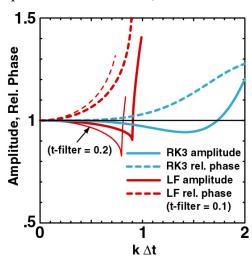
$$\alpha_d = \frac{1}{\rho_d}$$
 $\alpha = \alpha_d (1 + q_v + q_c + q_r \cdots)^{-1}$ $\rho = \rho_d (1 + q_v + q_c + q_r \cdots)$

covariant (u, ω) and contravariant w velocities

$$u = \frac{dx}{dt}, \quad w = \frac{dz}{dt}, \quad \omega = \frac{d\eta}{dt}$$

$$U=\mu u,\quad W\mu w,\quad \Omega=\mu\omega$$

WRF Tutorial July 2016


Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 3. Time integration scheme

Phase and amplitude errors for LF, RK3

Oscillation equation analysis

$$\psi_t = ik\psi$$

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 3. Time integration scheme

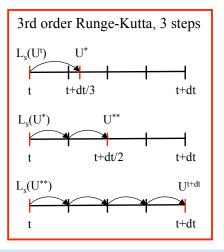
3rd Order Runge-Kutta time integration

advance
$$\phi^t \rightarrow \phi^{t+\Delta t}$$

$$\phi^* = \phi^t + \frac{\Delta t}{3} R(\phi^t)$$

$$\phi^{**} = \phi^t + \frac{\Delta t}{2} R(\phi^*)$$

$$\phi^{t+\Delta t} = \phi^t + \Delta t \, R(\phi^{**})$$


Amplification factor $\phi_t = ik\phi$; $\phi^{n+1} = A\phi^n$; $|A| = 1 - \frac{(k\Delta t)^4}{24}$

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 3. Time integration scheme – time splitting

$$U_{t} = L_{fast}(U) + L_{slow}(U)$$

- RK3 is 3rd order accurate for linear eqns, 2nd order accurate for nonlinear eqns.
- Stable for centered and upwind advection schemes.
- Stable for Courant number Udt/dx < 1.73
- Three L_{slow}(U) evaluations per timestep.

WRF Tutorial July 2016

Dynamics: 3. Time integration scheme - implementation

Begin time step

Runge-Kutta loop (steps 1, 2, and 3) —

- (i) advection, p-grad, buoyancy using $(\phi^t, \phi^*, \phi^{**})$
- (ii) physics if step 1, save for steps 2 and 3
- (iii) mixing, other non-RK dynamics, save...
- (iv) assemble dynamics tendencies

→ Acoustic step loop —

- (i) advance U,V, then μ , Θ , then w, ϕ
- (ii) time-average U,V, Ω

End acoustic loop ←

Advance scalars using time-averaged U,V, Ω

End Runge-Kutta loop ←

Adjustment physics (currently microphysics)

End time step

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 3. Time integration scheme – acoustic step

(Without expanding variables into perturbation form)

$$U^{\tau+\Delta\tau} \qquad \frac{\partial U}{\partial t} + \left(\mu_d \alpha \frac{\partial p}{\partial x} + \frac{\alpha}{\alpha_d} \frac{\partial p}{\partial \eta} \frac{\partial \phi}{\partial x}\right)^{\tau} = R_U^t$$

$$\mu_d^{\tau+\Delta\tau} \qquad \Omega^{\tau+\Delta\tau} \qquad \frac{\partial \mu_d}{\partial t} + \frac{\partial U}{\partial x}^{\tau+\Delta\tau} + \frac{\partial \Omega}{\partial \eta}^{\tau+\Delta\tau} = 0$$

$$\Theta^{\tau+\Delta\tau} \qquad \frac{\partial \Theta}{\partial t} + \left(\frac{\partial U\theta^t}{\partial x} + \frac{\partial \Omega\theta^t}{\partial \eta}\right)^{\tau+\Delta\tau} = R_\Theta^t$$

$$W^{\tau+\Delta\tau} \qquad \frac{\partial W}{\partial t} + g\left(\mu_d - \frac{\alpha}{\alpha_d} \frac{\partial p}{\partial \eta}\right)^{\tau} = R_W^t$$

$$\phi^{\tau+\Delta\tau} \qquad \mu_d^t \frac{\partial \phi}{\partial t} + U^{\tau+\Delta\tau} \frac{\partial \phi}{\partial x}^t + \Omega^{\tau+\Delta\tau} \frac{\partial \phi}{\partial \eta}^t - g\overline{W}^\tau = R_\phi^t$$

- Forward-backward differencing on U, Θ , and μ equations
- Vertically implicit differencing on W and ϕ equations

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 3. Time integration scheme – perturbation variables

Introduce the
$$\phi = \overline{\phi}(\overline{z}) + \phi', \ \mu = \overline{\mu}(\overline{z}) + \mu';$$
 perturbation variables:
$$p = \overline{p}(\overline{z}) + p', \ \alpha = \overline{\alpha}(\overline{z}) + \alpha'$$

Note –
$$\phi = \overline{\phi}(\overline{z}) = \overline{\phi}(x, y, \eta),$$

likewise $\overline{p}(x, y, \eta), \overline{\alpha}(x, y, \eta)$

Reduces horizontal pressure-gradient errors.

For small time steps, recast variables as perturbations from time t

$$U' = U'' + U'', \ V' = V'' + V'', \ W' = W'' + W'',$$

$$\Theta' = \Theta'' + \Theta'', \ \mu' = \mu'' + \mu'', \ \phi' = \phi'' + \phi'';$$

$$p' = p'' + p'', \ \alpha' = \alpha'' + \alpha''$$

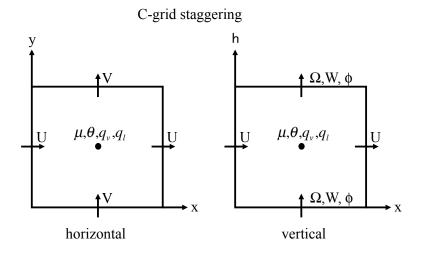
Allows vertical pressure gradient to be expressed in terms of ϕ ".

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 3. Time integration scheme – hydrostatic option

Instead of solving vertically implicit equations for W and ϕ Integrate the hydrostatic equation to obtain $p(\pi)$:


$$\frac{\partial p}{\partial \eta} = \left(\frac{\alpha_d}{\alpha}\right)^t \mu_d$$

Recover
$$\alpha$$
 and ϕ from: $p = \left(\frac{R_d \Theta_m}{p_o \mu_d \alpha_d}\right)^{\gamma}$, $\Theta_m = \Theta\left(1 + \frac{R_v}{R_d} q_v\right)$, and $\frac{\partial \phi}{\partial \eta} = -\mu_d \alpha_d$

W is no longer required during the integration.

WRF Tutorial July 2016

Dynamics: 4. Grid staggering – horizontal and vertical

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 5. Advection (transport) and conservation

For constant U, the 5th order flux divergence tendency becomes

$$\Delta t \frac{\delta(U\psi)}{\Delta x} \bigg|_{5th} = \Delta t \frac{\delta(U\psi)}{\Delta x} \bigg|_{6th}$$

$$- \underbrace{\left| \frac{U\Delta t}{\Delta x} \right| \frac{1}{60} \left(-\psi_{i-3} + 6\psi_{i-2} - 15\psi_{i-1} + 20\psi_{i} - 15\psi_{i+1} + 6\psi_{i+2} - \psi_{i+3} \right)}_{\frac{Cr}{60} \frac{\partial^{6}\psi}{\partial x^{6}} + H.O.T}$$

The odd-ordered flux divergence schemes are equivalent to the next higher ordered (even) flux-divergence scheme plus a dissipation term of the higher even order with a coefficient proportional to the Courant number.

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 5. Advection (transport) and conservation

 2^{nd} , 3^{rd} , 4^{th} , 5^{th} and 6^{th} order centered and upwind-biased schemes are available in the ARW model.

Example: 5th order scheme

$$\frac{\partial (U\psi)}{\partial x} = \frac{1}{\Delta x} \left(F_{i+\frac{1}{2}}(U\psi) - F_{i-\frac{1}{2}}(U\psi) \right)$$

where

$$F_{i-\frac{1}{2}}(U\psi) = U_{i-\frac{1}{2}} \left\{ \frac{37}{60} (\psi_i + \psi_{i-1}) - \frac{2}{15} (\psi_{i+1} + \psi_{i-2}) + \frac{1}{60} (\psi_{i+2} + \psi_{i-3}) \right\}$$
$$-sign(1,U) \frac{1}{60} \left\{ (\psi_{i+2} - \psi_{i-3}) - 5(\psi_{i+1} - \psi_{i-2}) + 10(\psi_i - \psi_{i-1}) \right\}$$

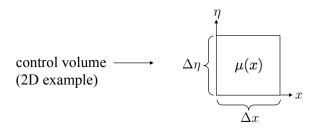
WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 5. Advection (transport) and conservation

Maximum Courant Number for Advection

$$C_a = U\Delta t / \Delta x$$


Time Integration Scheme	Advection Scheme				
	2^{nd}	3 rd	4^{th}	5^{th}	6 th
Leapfrog (g=0.1)	0.91	U	0.66	U	0.57
RK2	U	0.90	U	0.39	U
RK3	1.73	1.63	1.26	1.43	1.09

U = unstable

(Wicker & Skamarock, 2002)

WRF Tutorial July 2016

Dynamics: 5. Advection (transport) and conservation – dry-air mass

Mass in a control volume is proportional to

$$(\Delta x \Delta \eta)(\mu)^t$$

since
$$\mu(x)\Delta\eta = \Delta\pi = -g\rho\Delta z$$

WRF Tutorial July 2016

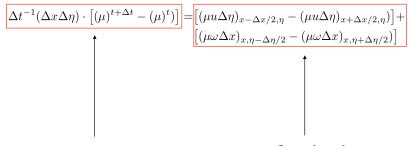
Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 5. Advection (transport) and conservation – dry-air mass

Mass in a control volume $(\Delta x \Delta \eta)(\mu)^t$

Mass conservation equation

$$\Delta t^{-1}(\Delta x \Delta \eta) \cdot \left[(\mu)^{t+\Delta t} - (\mu)^t \right] = \underbrace{\left[(\mu u \Delta \eta)_{x-\Delta x/2,\eta} - (\mu u \Delta \eta)_{x+\Delta x/2,\eta} \right]}_{\left[(\mu u \Delta x)_{x,\eta-\Delta \eta/2} - (\mu u \Delta x)_{x,\eta+\Delta \eta/2} \right]} + \underbrace{\left[(\mu u \Delta x)_{x,\eta-\Delta \eta/2} - (\mu u \Delta x)_{x,\eta+\Delta \eta/2} \right]}_{\mu \Delta \eta \Delta x}$$
Horizontal fluxes through the vertical control-volume faces


WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 5. Advection (transport) and conservation – dry-air mass

Mass in a control volume $(\Delta x \Delta \eta)(\mu)^t$ 2D example

Mass conservation equation

Change in mass over a time step

mass fluxes through control volume faces

WRF Tutorial July 2016

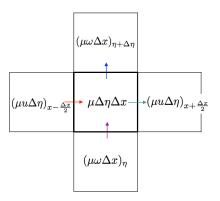
Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 5. Advection (transport) and conservation – dry-air mass

Mass in a control volume $(\Delta x \Delta \eta)(\mu)^t$

Mass conservation equation

$$\Delta t^{-1}(\Delta x \Delta \eta) \cdot \left[(\mu)^{t+\Delta t} - (\mu)^t \right] = \left[(\mu u \Delta \eta)_{x-\Delta x/2,\eta} - (\mu u \Delta \eta)_{x+\Delta x/2,\eta} \right] + \left[(\mu \omega \Delta x)_{x,\eta-\Delta \eta/2} - (\mu \omega \Delta x)_{x,\eta+\Delta \eta/2} \right]$$
 Vertical fluxes through the horizontal control-volume faces
$$\Delta \eta \left\{ \begin{array}{c} \mu \Delta \eta \Delta x \\ \mu \Delta \eta \Delta x \end{array} \right.$$

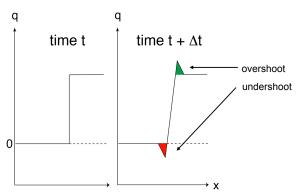

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

 Δx

Dynamics: 5. Advection (transport) and conservation – dry-air mass

The same mass fluxes are used for neighboring grid cells - hence mass is conserved locally and globally.



WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 5. Advection (transport) and conservation – shape preserving

1D advection

ARW transport is conservative, but not positive definite nor monotonic.

Removal of negative q

results in spurious source of $q \blacksquare$.

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 5. Advection (transport) and conservation – scalars

Mass in a control volume $(\Delta x \Delta \eta)(\mu)^t$ Scalar mass $(\Delta x \Delta \eta)(\mu \phi)^t$

Mass conservation equation:

$$\Delta t^{-1} (\Delta x \Delta \eta) \cdot \left[(\mu)^{t+\Delta t} - (\mu)^{t} \right] = \left[(\mu u \Delta \eta)_{x-\Delta x/2,\eta} - (\mu u \Delta \eta)_{x+\Delta x/2,\eta} \right] + \left[(\mu u \Delta x)_{x,\eta-\Delta \eta/2} - (\mu u \Delta x)_{x,\eta+\Delta \eta/2} \right]$$

change in mass over a time step

mass fluxes through control volume faces

Scalar mass conservation equation:

$$\Delta t^{-1}(\Delta x \Delta \eta) \cdot \left[(\mu \phi)^{t+\Delta t} - (\mu \phi)^t \right] = \left[(\mu u \phi \Delta \eta)_{x-\Delta x/2,\eta} - (\mu u \phi \Delta \eta)_{x+\Delta x/2,\eta}) \right] + \left[(\mu u \phi \Delta x)_{x,\eta-\Delta \eta/2} - (\mu u \phi \Delta x)_{x,\eta+\Delta \eta/2}) \right]$$
change in tracer mass

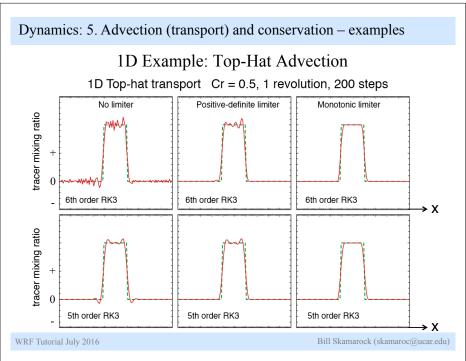
change in tracer mass over a time step

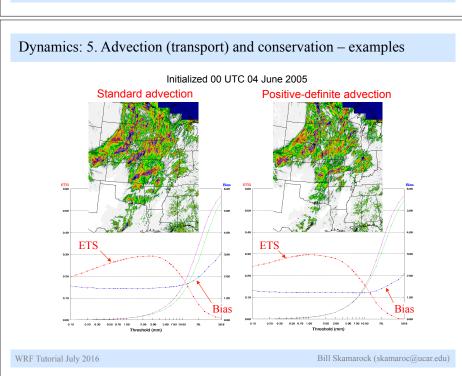
tracer mass fluxes through control volume faces

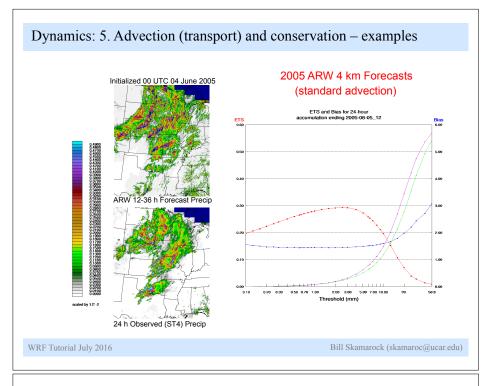
WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 5. Advection (transport) and conservation – shape preserving

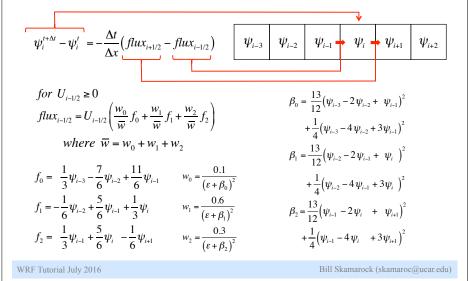

Scalar update, last RK3 step

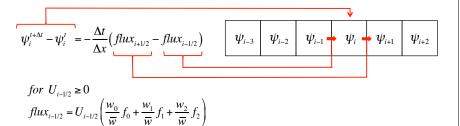

$$(\mu\phi)^{t+\Delta t} = (\mu\phi)^t - \Delta t \sum_{i=1}^n \delta_{x_i}[f_i] \quad (1)$$


- (1) Decompose flux: $f_i = f_i^{upwind} + f_i^c$
- (2) Renormalize high-order correction fluxes f_i^c such that solution is positive definite or monotonic: $f_i^c = R(f_i^c)$
- (3) Update scalar eqn. (1) using $f_i = f_i^{upwind} + R(f_i^c)$

Skamarock, MWR 2006, 2241-2250

WRF Tutorial July 2016




Dynamics: 5. Advection (transport) and conservation – WENO scheme

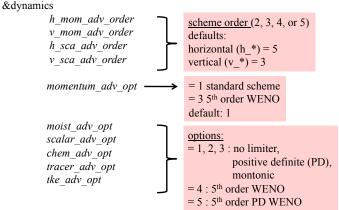
Weighted Essentially Non-Oscillatory scheme

Dynamics: 5. Advection (transport) and conservation – WENO scheme

Weighted Essentially Non-Oscillatory scheme

Positive-definite option uses same flux-renormalization as the standard ARW transport schemes.

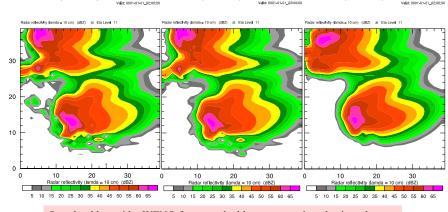
Can be used on momentum in addition to scalars.


WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 5. Advection (transport) and conservation

Where are the transport-scheme parameters?


The namelist.input file:

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 5. Advection (transport) and conservation – WENO scheme

One should consider WENO for some double-moment microphysics scheme applications where noise is a problem.

Application to momentum may not provide much benefit.

Results courtesy of Ted Mansell (NOAA/NSSL)

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 6. Time step parameters

 $3^{\rm rd}$ order Runge-Kutta time step Δt_{RK}

Courant number limited, 1D: $C_r = \frac{U\Delta t}{\Delta x} < 1.43$

Generally stable using a timestep approximately twice as large as used in a leapfrog model.

Where?

The namelist.input file:

&domains

time_step_(integer seconds)
time_step_fract_num
time_step_fract_den

WRF Tutorial July 2016

Dynamics: 6. Time step parameters

 3^{rd} order Runge-Kutta time step Δt_{RK} (&domains time_step)

Acoustic time step

2D horizontal Courant number limited: $C_r = \frac{C_s \Delta \tau}{\Delta h} < \frac{1}{\sqrt{2}}$ $\Delta \tau_{sound} = \Delta t_{RK} / \text{(number of acoustic steps)}$

Where?

The namelist.input file:

&dynamics

time_step_sound (integer)

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 7. Filters – divergence damping

Purpose: filter acoustic modes (3-D divergence, $D = \nabla \cdot \rho \mathbf{V}$)

$$\left\{ \frac{\partial \rho \mathbf{V}}{\partial t} + \nabla p + \dots = \gamma'_d \nabla D \right\}$$

$$\nabla \cdot \left\{ \quad \right\} \quad \to \quad \frac{\partial D}{\partial t} + \nabla^2 p + \dots = \gamma'_d \nabla^2 D$$

From the pressure equation: $p_t \simeq c^2 D$

$$\frac{\partial \rho \mathbf{V}}{\partial t} + \nabla [p_{\tau} + \gamma_d (p^{\tau} - p^{\tau - \Delta \tau})] + \dots = 0$$

 $\gamma_d = 0.1$ recommended (default) (&dynamics *smdiv*)

(Illustrated in height coordinates for simplicity)

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 6. Time step parameters

 3^{rd} order Runge-Kutta time step Δt_{RK} (&domains $time_step$)

Acoustic time step [&dynamics $time_step_sound$ (integer)]

Guidelines for time step

 Δt_{RK} in seconds should be about $6*\Delta x$ (grid size in kilometers). Larger Δt can be used in smaller-scale dry situations, but $time_step_sound$ (default = 4) should increase proportionately if larger Δt is used.

If ARW blows up (aborts) quickly, try:

Decreasing Δt_{RK} (that also decreases Δt_{sound}),

Or increasing time_step_sound (that decreases Δt_{sound} but does not change Δt_{RK})

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 7. Filters – time off-centering the vertical acoustic modes

Purpose: damp vertically-propagating acoustic modes

$$\frac{\partial W}{\partial t} + g \overline{\left(\mu_d - \frac{\alpha}{\alpha_d} \frac{\partial p}{\partial \eta}\right)^{\tau}} = \dots$$

$$\frac{\partial \phi}{\partial t} - \frac{g}{\mu_d^t} \overline{W}^{\tau} = \dots$$

$$\overline{()^{\tau}} = \frac{1 + \beta}{2} \overline{()^{\tau + \Delta \tau}} + \frac{1 - \beta}{2} \overline{()^{\tau}}$$

Slightly forward centering the vertical pressure gradient damps 3-D divergence as demonstrated for the divergence damper

 $\beta = 0.1$ recommended (default) [&dynamics epssm]

WRF Tutorial July 2016

Dynamics: 7. Filters – external mode filter

Purpose: filter the external mode

Vertically integrated horizontal divergence, $D_h = \int_1^0 (\nabla_{\eta} \cdot \mu \mathbf{V}_h) d\eta$

$$\left\{ \frac{\partial \mu \mathbf{V}_h}{\partial t} + \dots = -\gamma_e \nabla_{\eta} D_h \right\}$$
$$\int_1^0 \nabla_{\eta} \cdot \left\{ \right\} d\eta \quad \to \quad \frac{\partial D_h}{\partial t} + \dots = \gamma_e \nabla^2 D_h$$

Continuity equation:
$$\frac{\partial \mu}{\partial t} = -\nabla_{\eta} \cdot \mu \mathbf{V}_h - \frac{\partial \mu \dot{\eta}}{\partial \eta} = D_h$$

$$\frac{\partial \mu \mathbf{V}_h}{\partial \tau} + \dots = -\gamma_e \frac{\Delta x^2}{\Delta \tau^2} \nabla_{\eta} (\mu^{\tau} - \mu^{\tau - \Delta \tau})$$

 $\gamma_e = 0.01$ recommended (default) [&dynamics *emdiv*]

(Primarily for real-data applications)

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 7. Filters – 2D Smagorinsky

2nd-Order Horizontal Mixing, Horizontal-Deformation-Based K_h

Purpose: mixing on horizontal coordinate surfaces (real-data applications) [&dynamics diff_opt=1, km_opt=4]

$$\begin{split} K_h &= C_s^2 \, l^2 \bigg[0.25 \big(D_{11} - D_{22} \big)^2 + \overline{D_{12}^2}^{xy} \bigg]^{\frac{1}{2}} \\ \text{where} \qquad l &= \big(\Delta x \Delta y \big)^{1/2} \\ \qquad \qquad D_{11} &= 2 \, m^2 \big[\partial_x (m^{-1}u) - z_x \partial_z (m^{-1}u) \big] \\ \qquad \qquad D_{22} &= 2 \, m^2 \big[\partial_y (m^{-1}v) - z_y \partial_z (m^{-1}v) \big] \\ \qquad \qquad D_{12} &= m^2 \big[\partial_y (m^{-1}u) - z_y \partial_z (m^{-1}u) \\ \qquad \qquad + \partial_x (m^{-1}v) - z_x \partial_z (m^{-1}v) \big] \end{split}$$

 $C_s = 0.25$ (Smagorinsky coefficient, default value) [&dynamics c_s]

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 7. Filters – vertical velocity damping

Purpose: damp anomalously-large vertical velocities

(usually associated with anomalous physics tendencies)

Additional term:

$$\partial_t W = \dots \underline{-\mu_d \operatorname{sign}(W)\gamma_w(Cr - Cr_\beta)}$$

$$|\Omega dt|$$

$$Cr = \left| \frac{\Omega dt}{\mu d\eta} \right|$$

 Cr_{β} = 1.0 typical value (default)

[share/module_model_constants.F w_beta]

 $\gamma_w = 0.3 \text{ m/s}^2 \text{ recommended (default)}$

[share/module_model_constants.F w_alpha]

[&dynamics w_damping 0 (off; default) 1 (on)]

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 7. Filters – gravity-wave absorbing layer

Implicit Rayleigh w Damping Layer for Split-Explicit Nonhydrostatic NWP Models (gravity-wave absorbing layer)

Modification to small time step:

Step horizontal momentum, continuity, and potential temperature equations to new time level:

$$U^{\tau + \Delta \tau} \quad \mu^{\tau + \Delta \tau}$$

$$\Omega^{\tau + \Delta \tau} \quad \Theta^{\tau + \Delta \tau}$$

• Step vertical momentum and geopotential equations (implicit in the vertical):

$$W^{*\tau+\Delta\tau}$$
 $\phi^{*\tau+\Delta\tau}$

• Apply implicit Rayleigh damping on *W* as an adjustment step:

$$W^{\tau + \Delta \tau} = W^{*\tau + \Delta \tau} - \Delta \tau R_w(\eta) W^{\tau + \Delta \tau}$$

• Update final value of geopotential at new time level:

$$\phi^{\tau + \Delta \tau}$$

WRF Tutorial July 2016

Dynamics: 7. Filters – gravity-wave absorbing layer

Implicit Rayleigh w Damping Layer for Split-Explicit Nonhydrostatic NWP Models (gravity-wave absorbing layer)

$$W^{\tau + \Delta \tau} = W^{*\tau + \Delta \tau} - \Delta \tau R_w(\eta) W^{\tau + \Delta \tau}$$

$$R_w(\eta) = \left\{ \begin{array}{ll} \gamma_r \sin^2 \left[\frac{\pi}{2} \left(1 - \frac{z_{top} - z}{z_d} \right) \right] & \text{for } z \geq (z_{top} - z_d); \\ 0 & \text{otherwise,} \end{array} \right. \begin{array}{ll} R_w(\eta) \text{- damping rate (t$^{-1}$)} \\ z_d \text{- depth of the damping layer} \\ \gamma_r \text{- damping coefficient} \end{array}$$

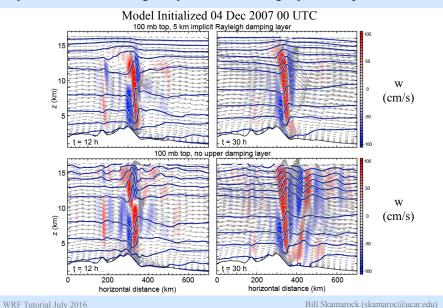
[&dynamics $damp_opt = 3$ (default = 0)] [&dynamics $damp_coef = 0.2$ (recommended, = 0. default)] [&dynamics zdamp = 5000. (z_d (meters); default); height below model top where damping begins]

WRF Tutorial July 2016

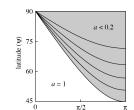
Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 8. Map projections and global configuration

ARW Model: projection options


- 1. Cartesian geometry: idealized cases
- 2. Lambert Conformal: mid-latitude applications
- 3. Polar Stereographic: high-latitude applications
- 4. Mercator: low-latitude applications
- 5. Latitude-Longitude global, regional

Projections 1-4 are isotropic $(m_x = m_y)$ Latitude-longitude projection is anistropic $(m_x \neq m_y)$


WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 7. Filters – gravity-wave absorbing layer example

Dynamics: 8. Map projections and global configuration

wavenumber (πk/n)

Filter Coefficient a(k), $\psi_0 = 45^\circ$

Global ARW – Polar filters

Converging gridlines severely limit timestep. The polar filter removes this limitation.

Filter procedure - Along a grid latitude circle:

- 1. Fourier transform variable.
- 2. Filter Fourier coefficients.
- 3. Transform back to physical space.

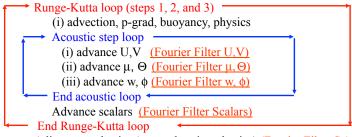
$$\hat{\phi}(k)_{filtered} = a(k)\,\hat{\phi}(k), \quad \text{for all } k$$

$$a(k) = \min \left[1., \max \left(0., \left(\frac{\cos \psi}{\cos \psi_o} \right)^2 \frac{1}{\sin^2(\pi k/n)} \right) \right]$$

k = dimensionless wavenumber

 $\hat{\phi}(k)$ = Fourier coefficients from forward transform

a(k) = filter coefficients


 $\psi = \text{latitude } \psi_o = \text{polar filter latitude, filter when } |\psi| > \psi_o$

WRF Tutorial July 2016

Dynamics: 8. Map projections and global configuration

ARW integration with polar filtering

Begin time step

Adjustment physics (currently microphysics) (Fourier Filter Sc)

End time step

Timestep limited by minimum Δx outside of polar-filter region. Monotonic and PD transport is not available for global model.

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 9. Boundary condition options

ARW Model: Boundary Condition Options

Lateral boundary conditions

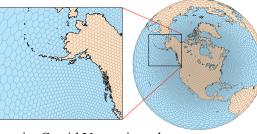
- 1. Specified (Coarse grid, real-data applications).
- 2. Open lateral boundaries (gravity-wave radiative).
- 3. Symmetric lateral boundary condition (free-slip wall).
- 4. Periodic lateral boundary conditions.
- 5. Nested boundary conditions (specified).

Top boundary conditions

1. Constant pressure.

Bottom boundary conditions

- 1. Free slip.
- 2. Various B.L. implementations of surface drag, fluxes.


WRF Tutorial July 2016

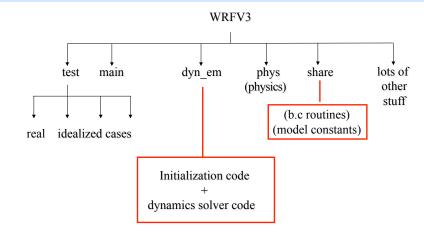
Bill Skamarock (skamaroc@ucar.edu)

Dynamics: 8. Map projections and global configuration

An alternative to global ARW...

- Global, nonhydrostatic, C-grid Voronoi mesh
- Numerics similar to WRF; WRF-NRCM physics
- No pole problems
- Variable-resolution mesh no nested BC problems

Available at: http://mpas-dev.github.io/



WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Dynamics: Where are things?

WRF ARW Tech Note

A Description of the Advanced Research WRF Version 3 (June 2008, 2012 update) http://www.mmm.ucar.edu/wrf/users/pub-doc.html

WRF Tutorial July 2016