Idealized Cases: Introduction

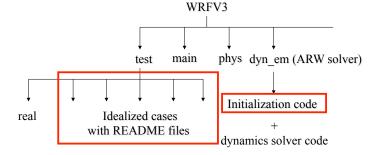
Initialization for Idealized Cases

Why do we provide idealized cases?

1. The cases provide simple tests of the dynamics solver for a broad range of space and time scale:

LES - Δx meters, Δt < second;

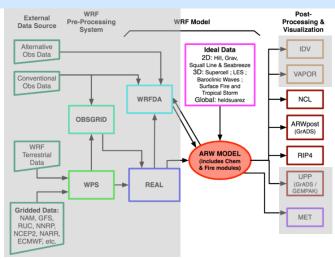
Baroclinic waves - Δx 100 km, Δt = 10 minutes.


- 2. The test cases reproduce known solutions (analytic, converged, or otherwise).
- 3. The cases provide a starting point for other idealized experiments.
- 4. They can be used to test physics development.
- 5. These tests are the easiest way to test the solver.

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: Introduction


WRF ARW code

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: Introduction

WRF ARW Tech Note

A Description of the Advanced Research WRF Version 3 http://www.mmm.ucar.edu/wrf/users/pub-doc.html

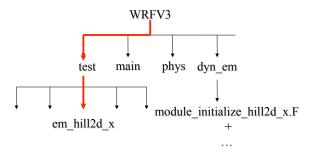
WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: Introduction

Idealized Test Cases for the WRF ARW Model V3.7

- 2D flow over a bell-shaped mountain WRFV3/test/em hill2d x
- 2D squall line (x, z; y, z) WRFV3/test/em squall2d x, em squall2d y
- 2D gravity current WRFV3/test/em grav2d x
- 2D sea-breeze case WRFV3/test/em_seabreeze2d_x
- 3D large-eddy simulation case WRFV3/test/em les
- 3D quarter-circle shear supercell thunderstorm WRFV3/test/em quarter ss
- 3D tropical cyclone WRFV3/test/em tropical cyclone
- 3D baroclinic wave in a channel WRFV3/test/em b wave
- 3D global: Held-Suarez case WRFV3/test/em heldsuarez
- 1D single column test configuration WRFV3/test/em scm xy
- 3D fire model test cases WRFV3/test/em fire
- 3D convective radiative equilibrium test WRFV3/test/em convrad

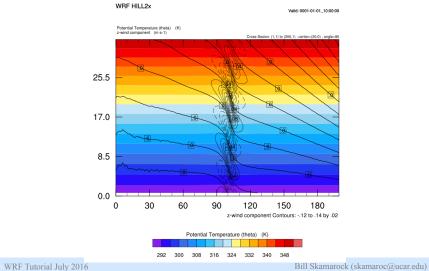

WRF Tutorial July 2016

Idealized Cases: 2d flow over a bell-shaped mountain

Running a test case: em hill2d x example

2D Flow Over a Bell-Shaped Mountain

Initialization module: dyn_em/module_initialize_hill2d_x.F Case directory: test/em_hill2d_x



WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: 2d flow over a bell-shaped mountain

$$(dx = 2km, dt=20s, T=10 h, wrf_Hill2d.ncl)$$

Idealized Cases: 2d flow over a bell-shaped mountain

From the WRFV3 main directory:

- > configure (choose the *no nesting* option)
- > compile em_hill2d_x

Move to the test directory:

- > cd test/em hill2d x
- > ideal.exe (this produces the ARW initial conditions)
- > wrf.exe (executes ARW)

Finish by plotting output using scripts downloaded from the ARW website (wrf Hill2d.ncl)

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: 2d flow over a bell-shaped mountain

What happens during the initialization

Initialization code: WRFV3/dyn_em/module_initialize_hill2d_x.F

- Model levels are set within the initialization: code in initialization exist to
 produce a stretched η coordinate (close to equally spaced z), or equally spaced
 η coordinate.
- · Terrain is set in the initialization code
- A single sounding (z, θ, Q_v, u and v) is read in from WRFV3/test/em hill2d x/input sounding
- Sounding is interpolated to the ARW grid, equation of state and hydrostatic balance used to compute the full thermodynamics state.
- Wind fields are interplolated to model η levels.

3D meshes are always used, even in 2D (x,z; y,z) cases. The third dimension contains only 5 planes, the boundary conditions in that dimension are periodic, and the solutions on the planes are identical in the initial state and remain so during the integration.

WRF Tutorial July 2016

Idealized Cases: 2d flow over a bell-shaped mountain

Setting the terrain heights

In WRFV3/dyn em/module initialize hill2d x.F

```
SUBROUTINE init domain rk ( grid, &

    mountain height and half-width

             hm = 100.
             xa = 5.0
                                 mountain position in domain
             icm = ide/2
                                 (center gridpoint in x)
            DO j=jts,jte
Set height
            DO i=its,ite ! flat surface
              grid%ht(i,j) = hm/(1.+(float(i-icm)/xa)**2)
              grid%phb(i,1,j) = g*grid%ht(i,j)
              grid%php(i,1,j) = 0. lower boundary condition
              grid%ph0(i,1,j) = grid%phb(i,1,j)
             ENDDO
             ENDDO
```

WRF Tutorial July 2016

WRF Tutorial July 2016

field -

Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: 2d squall line

Squall-line simulation T = 3600 s $\Delta x = \Delta z = 250$ meters $v = 300 \text{ m}^2/\text{s}$

Idealized Cases: 2d flow over a bell-shaped mountain

Sounding File Format

File: WRFV3/test/em quarter ss/input sounding

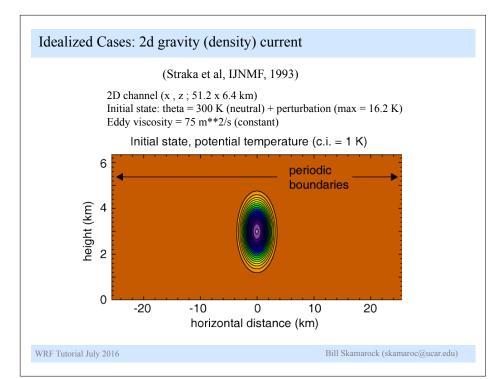
line 1 —> each successive line is a	surface Pressure (mb) 1000.00 250.00 750.00 1250.00 1750.00	surface potential Temperature (K) 300.00 300.45 301.25 302.47 303.93	surface vapor mixing ratio (g/kg) 14.00 14.00 13.50 11.10	-7.88 -6.94 -5.17 -2.76	-3.58 -0.89 1.33 2.84
point in the sounding	2250.00 2750.00 3250.00 3750.00 4250.00 4750.00 height (m)	305.31 306.81 308.46 310.03 311.74 313.48 potential temperature (K)	9.06 7.36 5.95 4.78 3.82 3.01 vapor mixing ratio (g/kg)	0.01 2.87 5.73 8.58 11.44 14.30 U (west-east)	3.47 3.49 3.49 3.49 3.49 V (south-north) velocity
		()	(3 3)	(m/s)	(m/s)

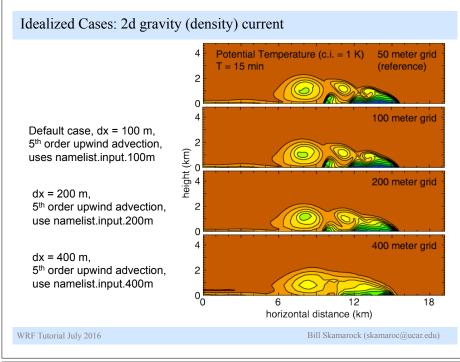
WRF Tutorial July 2016

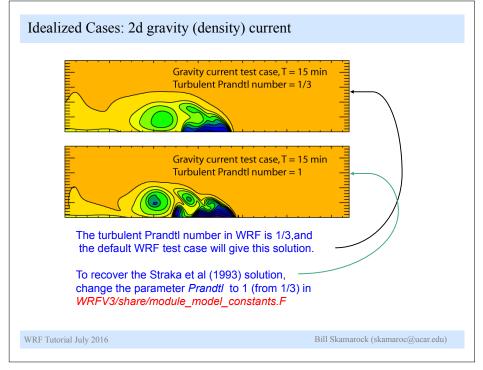
Bill Skamarock (skamaroc@ucar.edu)

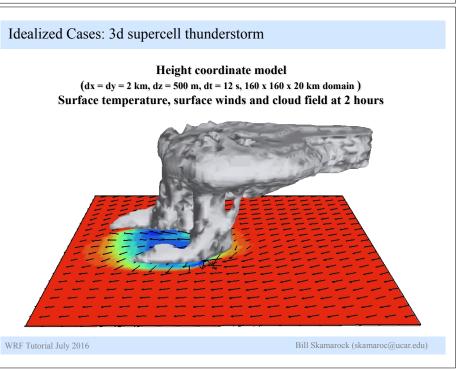
Idealized Cases: 2d squall line

squall2d x is (x,z), squall2d y is (y,z); both produce the same solution.


Initialization codes are in


WRFV3/dyn em/module initialize squall2d x.F WRFV3/dyn em/module initialize squall2d y.F This code also introduces the initial perturbation.


The thermodynamic soundings and hodographs are in the ascii input files


WRFV3/test/em squall2d x/input sounding WRFV3/test/em squall2d y/input sounding

WRF Tutorial July 2016

Idealized Cases: 3d Large Eddy Simulation (LES)

Initialization code is in

WRFV3/dyn em/module initialize les.F

Test case directory is in

WRFV3/test/em les

The default case is a large-eddy simulation of free convective boundary layer with no winds. The turbulence of the free CBL is driven and maintained by namelist-specified surface heat flux.

An initial sounding with mean winds is also provided.

Reference: Moeng et al. 2007 MWR

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: 3d tropical cyclone

Default vortex:

- weak (12.9 m/s) axisymmetric analytic vortex (Rotunno and Emanuel, 1987, JAS)
- · placed in center of domain
- in "module initialize tropical cyclone.F" users can modify initial size and intensity (see parameters r0, rmax, vmax, zdd)

Default environment:

- mean hurricane sounding from Jordan (1958, J. Meteor.)
- SST = 28 degrees C
- $f = 5e-5 s^{-1}$ (20 degrees North)

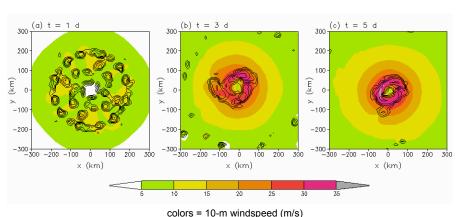
Default domain:

• 3000 km x 3000 km x 25 km domain

• default dx,dy is only 15 km: useful for quick tests of new code (i.e., new physics schemes); research-quality studies should use smaller dx,dy

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

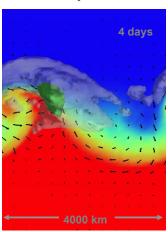

colors = relative humidity (%)

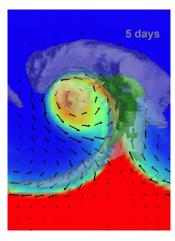
contours = azimuthal velocity (m/s)

Idealized Cases: 3d Large Eddy Simulation (LES) x (grid points) 900 600 300 304 308 312 316 0.4 0.6 0.8

Idealized Cases: 3d tropical cyclone

WRF Tutorial July 2016


contours = reflectivity (every 10 dBZ)


WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: baroclinic wave in a channel

Height coordinate model (dx = 100 km, dz = 250 m, dt = 600 s) Surface temperature, surface winds, cloud and rain water

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: baroclinic wave in a channel

Initialization code is in WRFV3/dyn_em/module_initialize_b_wave.F

The initial jet (y,z) is read from the binary input file *WRFV3/test/em_b_wave/input_jet*

The initial perturbation is hardwired in the initialization code.

WRF Tutorial July 2016

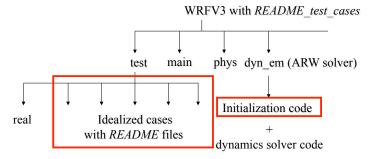
Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: baroclinic wave in a channel

Default configuration in

WRFV3/test/em_b_wave/namelist.input runs the dry jet in a periodic channel with dimension (4000 x 8000 x 16 km) (x,y,z).

Turning on any microphysics (mp_physics > 0 in namelist.input) puts moisture into the model state.


The initial jet only works for dy = 100 km and 81 grid points in the y (south-north) direction.

Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: More information

Descriptions: WRFV3/README test cases

WRFV3/README_test_cases
WRFV3/test/em_*/README

WRF Tutorial July 2016

Bill Skamarock (skamaroc@ucar.edu)

WRF Tutorial July 2016

Idealized Cases

Idealized Test Cases for the WRF ARW Model V3.7

- 2D flow over a bell-shaped mountain WRFV3/test/em hill2d x
- 2D squall line (x, z; y, z) WRFV3/test/em_squall2d_x, em_squall2d_y
- 2D gravity current WRFV3/test/em_grav2d_x
- 2D sea-breeze case WRFV3/test/em seabreeze2d x
- 3D large-eddy simulation case WRFV3/test/em les
- 3D quarter-circle shear supercell thunderstorm WRFV3/test/em quarter ss
- 3D tropical cyclone WRFV3/test/em_tropical_cyclone
- 3D baroclinic wave in a channel WRFV3/test/em b wave
- 3D global: Held-Suarez case WRFV3/test/em_heldsuarez
- 1D single column test configuration WRFV3/test/em scm xy
- 3D fire model test cases WRFV3/test/em fire
- 3D convective radiative equilibrium test WRFV3/test/em convrad

WRF Tutorial July 2016