

Function	Function		
 A non-Cartesian <i>projected domain</i> Lambert conformal, Mercator, polar stereographic, rotated latitude/longitude (global or regional) Selection of <i>realistic static fields</i> of topography, land use, vegetation, and soil category data Requirement of <i>time dependent</i> lateral boundary conditions for a regional forecast 	 Generation of <i>diagnostics</i> necessary for assumed WRF model input Input field <i>adjustment</i> for consistency of static and time dependent fields (land mask with soil temperature, etc.) ARW: computation of <i>reference</i> and <i>perturbation</i> fields Generation of <i>initial</i> state for each of the requested domains Creation of a <i>lateral boundary file</i> for the most coarse domain <i>Vertical interpolation</i> for 3d meteorological fields and for sub-surface soil data 		
Function	Standard Input Variables		
 Run-time options specified in the Fortran namelist file (namelist.input for real and WRF) Compile-time options Changes inside of the source code Compiler flags CPP ifdefs Modifications to the Registry file 	 The metgrid program typically provides meteorological data to the real program. Coordinate: The real program is able to input and correctly process any <i>strictly monotonic</i> vertical coordinate Isobaric: OK Sigma: OK Hybrid: OK 		

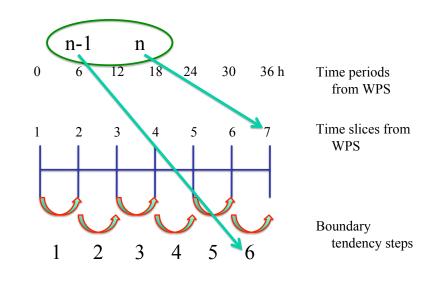
Standard Input Variables

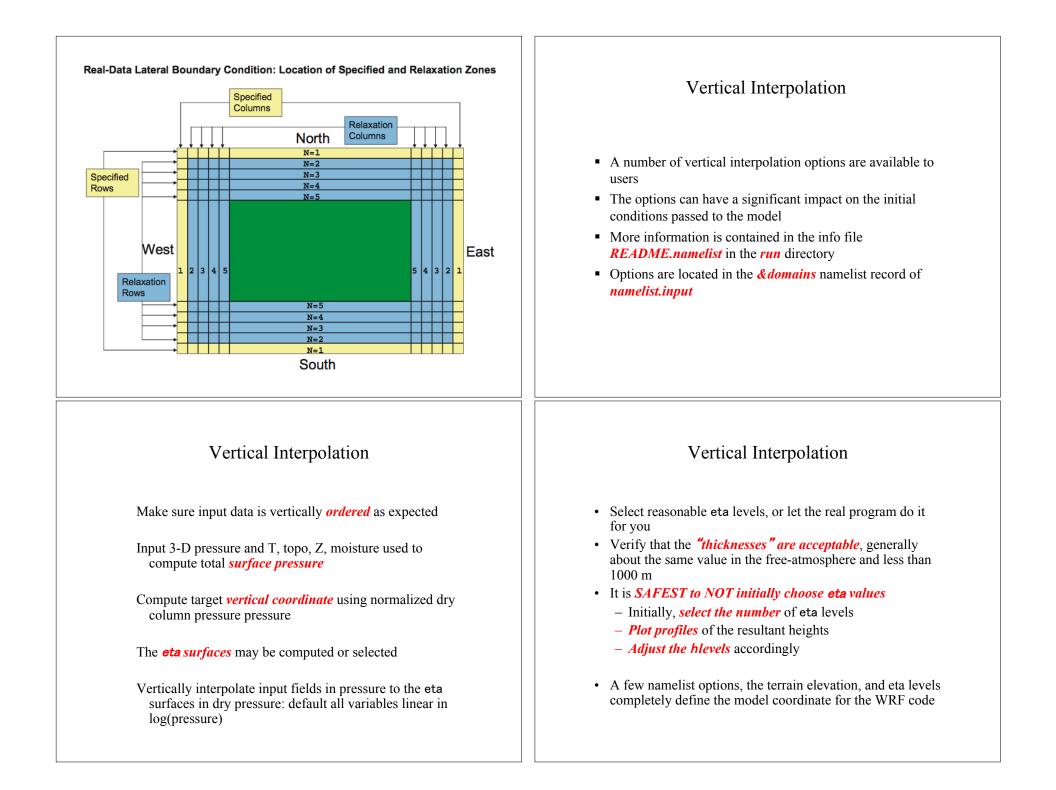
- The metgrid program typically provides meteorological data to the real program.
- Mandatory:
 - 3d and surface: horizontal winds, temperature, relative humidity, geopotential height
 - 3d soil: soil temperature
 - 2d fields: surface pressure, sea-level pressure, land mask
- Optional (but desirable):
 - 3d soil: soil moisture
 - 2d fields: topography elevation of input data, SST, sea-ice, skin temperature

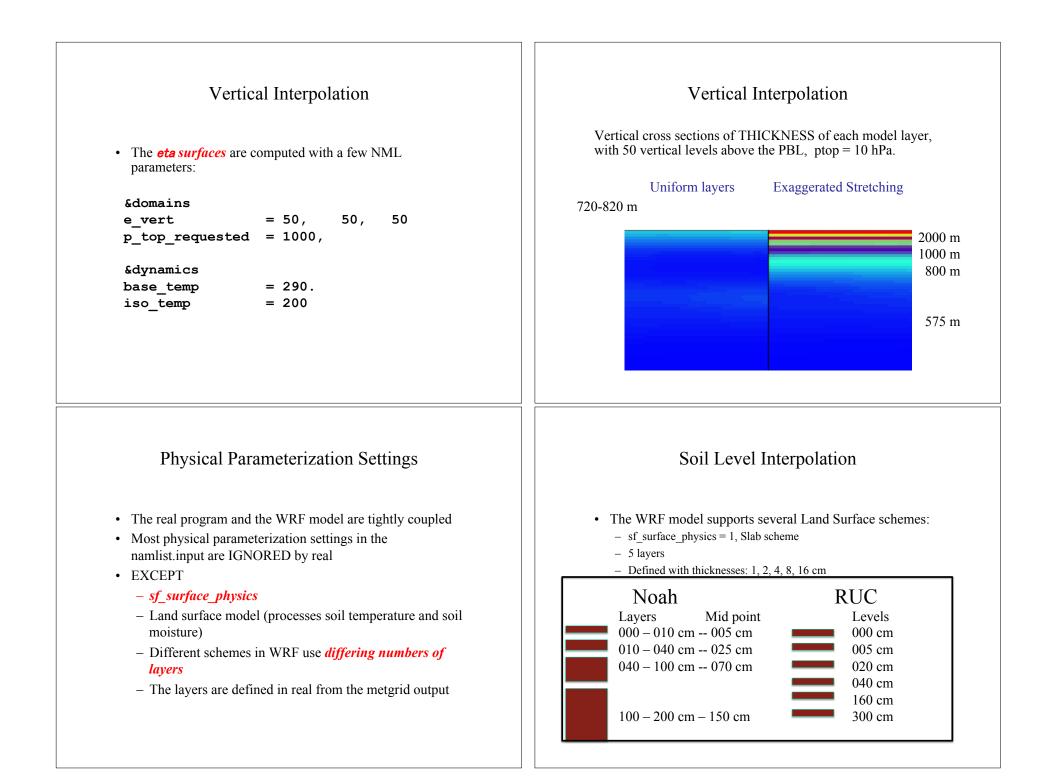
• Several of the mass-point fields are *separated* into a timeindependent *base state* (also called a reference state) and a

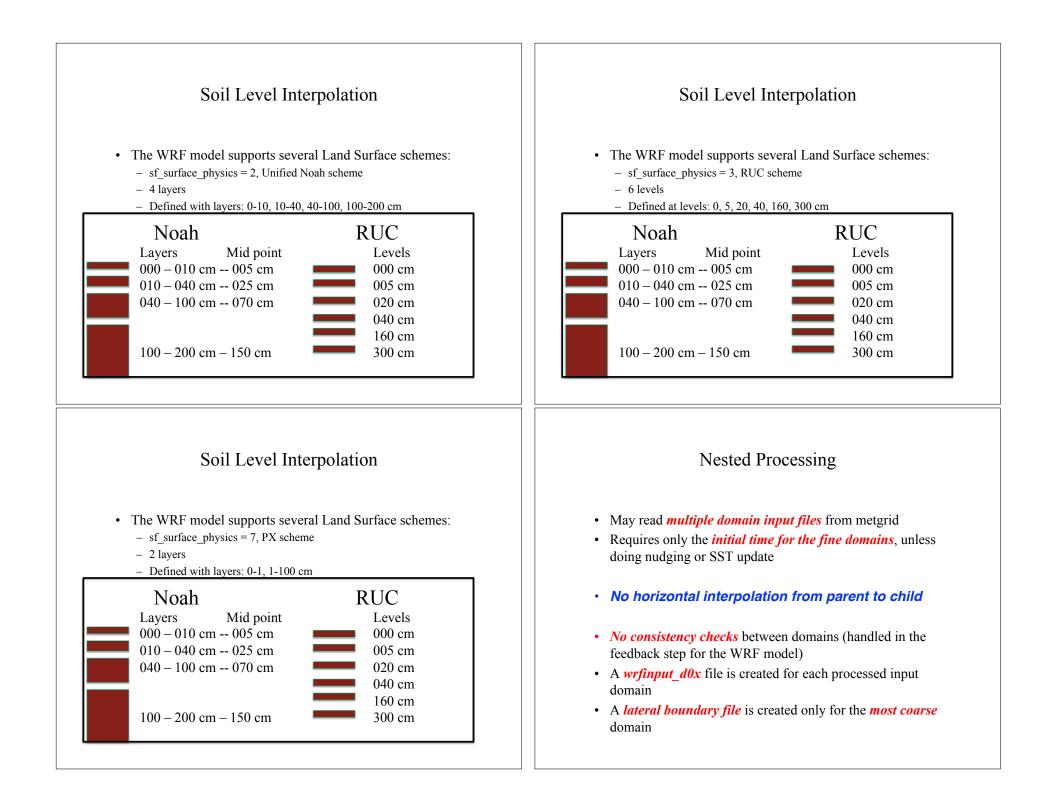
Base State

• The base state fields are only functions of the *topography* and a few user-selectable constants


perturbation from the base state


- If the *topography changes*, such as with a moving nest, the base state fields are modified
- Feedback for 2-way nesting also impacts base state fields through topographic averaging – inside of the WRF model
- No base state computations are required *prior to the real program*


Standard Generated Output


- For regional forecasts, the real program generates both an both an initial (*wrfinput_d01*) and a lateral boundary (*wrfbdy_d01*)
- The boundary file is not required for *global forecasts* with ARW (look at MPAS for global simulations)
- The *initial condition* file contains a *single time period* of data
- These files contain data used directly by the WRF model
- The initial condition file may be ingested by the *WRFDA* code (referred to as a *cold-start*)
- If *n* times were processed with WPS and real, the lateral boundary file contains *n*-1 time slices

Lateral Boundary Condition Times

Real program in a nutshell	Real program in a nutshell: PART 2	
FunctionStandard input variablesBase State	 Access to everything Eta levels Metgrid flags 	
Standard generated output	Adding a variable for vertical interpolation	
Vertical interpolationSoil level interpolation	Vertical interpolationTracers	
Nested processing	Trajectories	
	• Options	
Access to Everything	Access to Everything	
 The primary location to modify the real program is the dyn_em/module_initialize_real.F file 	 The value of every variable input into the WRF model is controlled through module_initialize_real.F 	
 Contains: – Registry information – All of the namelist settings selected 	• All variables are accessed through the derived data type "grid"	
– Variables from the metgrid program	<pre>DO j=jts,MIN(jde-1,jte)</pre>	
 Variables to be sent to the WRF model 	DO i=its,MIN(ide-1,ite)	
Called for every time period, for every domain	<pre>grid%sst(i,j) = grid%sst(i,j) + 1 END DO</pre>	
	END DO	

Access to Everything	Eta Levels		
• The dynamics variables have two time levels , indicated by the _1 and _2 suffixes. Only the _2 variables are sent to WRF.	• The vertical coordinate , eta, used in the WRF model is defined inside of the real program.		
• Some variables sent to WRF are diagnostic only	• The user may allow the real program to choose the levels (select only the number of levels in the namelist.input file)		
DO j = jts, min(jde-1,jte)	&domains		
DO i = its, min(ide,ite)	$e_{vert} = 30, 30, 30,$		
<pre>grid%u10(i,j)=grid%u_gc(i,1,j)</pre>	/		
END DO			
END DO	&domains		
	e_vert = 30, 40, 50, /		
Eta Levels	Eta Levels		
• Often the user needs to specify the eta levels (coordinate this with your model top)	 Run the real program (single or small domain, one time level), make sure the level thicknesses are OK (< 1000 m) 		
• Use the automatic generation to your advantage	Converged znw(kte) should be about 0.0 = -5.2081142E-04		
• Specify how many levels ABOVE the PBL that you require. Add 8 to this value. For example, you require 50 vertical levels above the PBL.	Full level index =1Height =0.0 mFull level index =2Height =56.6 mThickness =56.6 mFull level index =3Height =137.9 mThickness =81.4 mFull level index =4Height =244.7 mThickness =106.8 mFull level index =5Height =377.6 mThickness =132.9 mFull level index =6Height =546.3 mThickness =168.7 mFull level index =7710 mThickness =168.7 m		
&domains	Full level index =7Height =761.1 mThickness =214.8 mFull level index =8Height =1016.2 mThickness =255.0 m		
e_vert = 58, 58, 58,	Full level index =9Height =1207.1 mThickness =190.9 mFull level index =10Height =1401.8 mThickness =194.6 m		
/	Full level index = 11 Height = 1600.3 m Thickness = 198.5 m Full level index = 12 Height = 1802.8 m Thickness = 202.5 m		

Eta Levels

• Get the computed levels from ncdump, after running the real program

> ncdump -v ZNW wrfinput_d01

data:

ZNW =

1, 0.993, 0.983, 0.97, 0.954, 0.934, 0.909, 0.88, 0.8587637, 0.8375274, 0.8162911, 0.7950548, 0.7550299, 0.7165666, 0.6796144, 0.6441237, 0.6100466, 0.5773363, 0.5459476, 0.5158363, 0.4869595, 0.4592754, 0.4327437, 0.407325, 0.382981, 0.3596745, 0.3373697, 0.3160312, 0.2956253, 0.2761188, 0.2574798, 0.2396769, 0.2226802, 0.2064602, 0.1909855, 0.1762376, 0.1621807, 0.1487919, 0.1360459, 0.1239184, 0.1124378, 0.1017038, 0.09166772, 0.08228429, 0.07351105, 0.06530831, 0.05763897, 0.05046835, 0.04376402, 0.03749565, 0.0316349, 0.02615526, 0.02103195, 0.01624179, 0.01176313, 0.007575703, 0.003660574, 0 ;

Eta Levels

- Re-run the real program (all domains, all time periods) with the new levels in the nml variable **eta_levels**
- Replace the **PBL values** with those of your choosing.
- Augment the number of vertical levels (e_vert)
- Note that both e_vert and eta_levels are full levels

Eta Levels

&domains

```
eta_levels =
    1, 0.993, 0.983, 0.97, 0.954, 0.934, 0.909, 0.88,
    0.8587637, 0.8375274,
    0.8162911, 0.7950548, 0.7550299, 0.7165666, 0.6796144, 0.6441237,
    0.6100466, 0.5773363, 0.5459476, 0.5158363, 0.4869595, 0.4592754,
    0.4327437, 0.407325, 0.382981, 0.3596745, 0.3373697, 0.3160312,
    0.2956253, 0.2761188, 0.2574798, 0.2396769, 0.2226802, 0.2064602,
    0.1909885, 0.1762376, 0.1621807, 0.1487919, 0.1360459, 0.1239184,
    0.1124378, 0.1017038, 0.09166772, 0.08228429, 0.07351105, 0.06530831,
    0.05763897, 0.05046835, 0.04376402, 0.03749565, 0.0316349, 0.02615526,
    0.02103195, 0.01624179, 0.01176313, 0.007575703, 0.003660574, 0
```

/

```
    Maybe replace with

            0.999, 0.998, 0.996, 0.993, 0.990, 0.980, 0.970, 0.960, 0.950, 0.940, 0.930, 0.920, 0.910, 0.900, 0.890, 0.880, 0.870,
```

Eta Levels

- For vertical nesting refinement, follow the similar procedure for each domain.
- Each domain will need a specification of eta levels
- The assignment of the single **eta_levels array is split** into pieces for easier understanding

Eta Levels

max_dom	= 2,	
e_vert	= 35, 45,	
<pre>eta_levels(1:35)</pre>	= 1., 0.993, 0.983, 0.97, 0.954, 0.93	4,
	0.909, 0.88, 0.840, 0.801, 0.761, 0	.72
	0.652, 0.587, 0.527, 0.472, 0.421,	0.3
	0.331, 0.291, 0.255, 0.222, 0.191,	0.1
	0.138, 0.115, 0.095, 0.077, 0.061,	0.0
	0.035, 0.024, 0.015, 0.007, 0.	
eta_levels(36:81)	= 1.0000, 0.9946, 0.9875, 0.9789, 0.9	685
	0.9562, 0.9413, 0.9238, 0.9037, 0.8	813
	0.8514, 0.8210, 0.7906, 0.7602, 0.7	298
	0.6812, 0.6290, 0.5796, 0.5333, 0.4	901
	0.4493, 0.4109, 0.3746, 0.3412, 0.3	098
	0.2802, 0.2524, 0.2267, 0.2028, 0.1	803
	0.1593, 0.1398, 0.1219, 0.1054, 0.0	904
	0.0766, 0.0645, 0.0534, 0.0433, 0.0	341
	0.0259, 0.0185, 0.0118, 0.0056, 0.	
vert_refine_metho	l = 0, 2,	

The metgrid Flags

> ncdump -h met_em.d01.2000-01-24_12:00:00.nc | grep FLAG

:FLAG METGRID = 1 ; :FLAG_EXCLUDED_MIDDLE = 0 ; :FLAG_SOIL_LAYERS = 1 ; :FLAG SNOW = 1 ; :FLAG PSFC = 1 ; :FLAG_SM000010 = 1 ; :FLAG SM010040 = 1 ; :FLAG_SM040100 = 1 ; :FLAG SM100200 = 1 ; :FLAG ST000010 = 1 ; :FLAG ST010040 = 1 ;:FLAG_ST040100 = 1 ; :FLAG_ST100200 = 1 ; :FLAG SLP = 1; :FLAG_TAVGSFC = 1 ; :FLAG_QNWFA = 1 ; :FLAG ONIFA = 1 ; :FLAG SOILHGT = 1 ; :FLAG_MF_XY = 1 ;

The metgrid Flags • The real program and the WRF model are able to communicate directly through the **Registry** file • The real program is only able to talk with the **metgrid** program through the input data stream • Specific information about the incoming data is contained in **special flags** that the user may set in the metgrid table file - usually, related to THIS VARIABLE EXISTS name=PMSL interp_option=sixteen_pt+four_pt+average_4pt flag_in_output=FLAG_SLP _____ The metgrid Flags • The real program uses this **information** when deciding how to do many operations: – Is the input from metgrid? - Method to compute surface pressure

- Use RH vs mixing ratio vs specific humidity computations
- Excluded middle processing
- Average surface air temperature for lake temperatures
- Water/Ice friendly vertical interpolation
- Which levels of soil data are present
- All **flags** for the metgrid to real data transfer are contained in **share/module_optional_input.F**

The metgrid Flags	Adding a Variable for Vertical Interpolation	
<pre>flag_slp = 0 flag_name(1:8) = 'SLP ' CALL wrf_get_dom_ti_integer (fid, 'FLAG_' // & flag_name, itmp, 1, icnt, ierr) IF (ierr .EQ. 0) THEN flag_slp = itmp END IF</pre>	 This process is manual Every new input 3d variable that needs to be interpolated needs to have an explicit block of code added Mass-point variables (such as would be used in all physics schemes) are straight forward, as they may be largely copied using the existing templates already in place Most vertical interpolation options are supplied from the namelist.input file All interpolation is handled in dry pressure 	
Adding a Variable for Vertical Interpolation	Tracers	
<pre>CALL vert_interp (grid%t_gc , grid%pd_gc , & grid%t_2 , grid%pb , & grid%tmaxw , grid%ttrop , grid%pmaxw , grid%ptrop , & grid%pmaxwn , grid%ptropnn , & flag_tmaxw , flag_ttrop , & config_flags%maxw_horiz_pres_diff , & config_flags%trop_horiz_pres_diff , & config_flags%maxw_above_this_level , & num_metgrid_levels , 'T' , & interp_type , lagrange_order , t_extrap_type , & lowest_lev_from_sfc , use_levels_below_ground , & use_surface , zap_close_levels , force_sfc_in_vinterp , & ids , ide , jds , jde , kds , kde , & ims , ime , jms , jme , kms , kme , & its , ite , jts , jte , kts , kte)</pre>	 The WRF model is able to advect arrays of passive scalars (tracer 4d array) As with all other variables going into the WRF model, this data is available to be set in the real program These variables must be coordinated with the Registry names, as the tracer index is an automatically manufactured name # Tracer Scalars # state real tr17_1 ikjftb tracer 1 - irhusdf=(bdy_interp:dt) \ "tr17_1" "tr17_1" "Dimensionless" 	

Tracers	Tracers
 As with all 4d arrays, no space is allocated unless the packaged variables are requested for processing at run-time package tracer_test1 tracer_opt==2 - tracer:tr17_1 	<pre>! Template for initializing tracer arrays. ! A small plane in the middle of the domain at ! lowest model level is defined. IF (config_flags%tracer_opt .eq. 2) THEN DO j = (jde + jds)/2 - 4, (jde + jds)/2 + 4, 1 DO i = (ide + ids)/2 - 4, (ide + ids)/2 + 4, 1 IF ((its .LE. i .and. ite .GE. i) .and. & (jts .LE. j .and. jte .GE. j)) THEN tracer(i, 1, j, P_tr17_1) = 1. END IF END DO END DO END DO END IF</pre>
Trajectories	Trajectories
 The user may specify (i,j,k) locations in the model domain to follow parcels: traj_i, traj_j, traj_k (hard coded in the module_initialize_real.F file) 	 The trajectory code uses the lat, lon locations, so the initial (i,j) value of the lat, lon is assigned
• The current number of trajectory locations is small, 25, and is a run-time option that the user sets in the nml file	<pre>IF (config_flags%num_traj .gt. 0 .and.</pre>
&domain	IF (its .LE. i .and. ite .GE. i .and. &
num_traj = 25,	jts .LE. j .and. jte .GE. j) THEN grid%traj_i (icount) = i grid%traj_j (icount) = j grid%traj_k (icount) = 10
<pre>&physics traj_opt = 1,</pre>	<pre>grid%traj_lat (icount) = grid%xlat(i,j) grid%traj_long(icount) = grid%xlong(i,j) END IF</pre>

Options	Options		
 When there are strong normal topo gradients along the outer rows and columns of the most-coarse domain, smoothing the topography to match the incoming first guess data is a good idea. This is the same sort processing that is done to make the child and parent domains more consistent in the area of the LBC forcing &domains smooth_cg_topo = .true. 	 Time varying fields for longer simulations are available from the technique set up for "SST Update" A new field will be automatically added to the input file to the WRF model (provided by the real program) with a few changes to the Registry file (Registry.EM_COMMON), specifying stream 4 state real my_new_field ij misc 1 - \ i024rhdu "MY_NEW_FIELD" \ "SOME DESCRIPTION" "SOME UNITS" 		
Options	Real program in a nutshell: PART 2		
 Information for using time varying data is specified at run-time in the namelist file &time_control auxinput4_inname "wrflowinp_d<domain>"</domain> auxinput4_interval 360 io_form_auxinput4 2 &physics sst_update 1 	 Access to everything Eta levels Metgrid flags Adding a variable for vertical interpolation Vertical interpolation Tracers Trajectories Options 		

Real program in a nutshell: PART 2		Real program in a nutshell: PART 2	
 Access to everything Eta levels Metgrid flags Adding a variable for value Vertical interpolation Tracers Trajectories Options 	The Derived Data Type: grid Example: grid%sst ertical interpolation	 Access to everything Eta levels Metgrid flags Adding a variable for ve Vertical interpolation Tracers Trajectories Options 	Completely user defined May be different per domain ertical interpolation Be careful of the thicknesses Tightly coupled with the model lid
Real program in a nutshell: PART 2 • Access to everything The metgrid program provides flags for some internal communication real to metgrid • Eta levels for some internal communication real to metgrid • Metgrid flags real to metgrid • Adding a variable for vertical interpolation These flags are defined inside the METGRID.TBL file (for WPS) and in the file share/ • Trajectories The file share/ module_optional_input.F (real)		Real program i Access to everything Eta levels Metgrid flags Adding a variable for very Vertical interpolation Tracers Trajectories Options	in a nutshell: PART 2 Requires new code inside real Examples are easily available ertical interpolation

Real program in a nutshell: PART 2		Real program in a nutshell: PART 2	
• Eta levels	ways in dry pressure out vertical coordinate neutral interpolation	 Access to everything Eta levels Metgrid flags Adding a variable for verical interpolation Tracers Trajectories Options 	Simple way to initialize passive scalars ertical interpolation Users should provide info for which tracers in the Registry, and select the accompanying option in the namelis
 Eta levels sta Metgrid flags is a Adding a variable for vertical Vertical interpolation Tracers Ch 	simple (i,j,k) initialization for the rting locations of trajectory points available	Real program i • Access to everything • Eta levels • Metgrid flags • Adding a variable for verical interpolation • Tracers • Trajectories • Options	n a nutshell: PART 2 Users may smooth the outer rows and columns so that the topography on the coarse grid and the external model are consistent ertical interpolation Users may add variables to streams easily, an example is that the SST update option could have a new field included (for example, soil moisture)