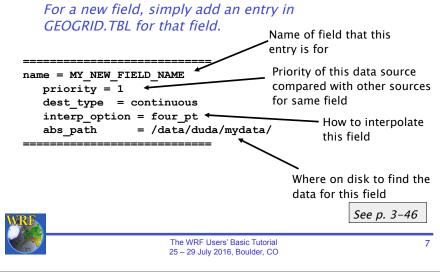


The GEOGRID.TBL File


- Using the GEOGRID.TBL, we can
 - Change the method(s) used to interpolate a field
 - Apply smoothing filters to continuous fields
 - Derive fields from others
 - E.g., dominant category or slope fields
 - Add new data for geogrid to interpolate

The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO

1) Completely new fields

Completely new fields:

New Fields in GEOGRID.TBL

There are three basic types of new data to be added through the GEOGRID.TBL file:

1) Completely new fields

- fields that were previously not processed by geogrid

- 2) Different resolution data sets for an existing field
 - Such sources do not need to be supplemented by existing data
 - E.g., Adding a 90-meter resolution topography data set
- 3) Alternative sources for a field that *must be used in addition to an existing source*
 - E.g., A new soil category data set exists, but covers only South Korea

5

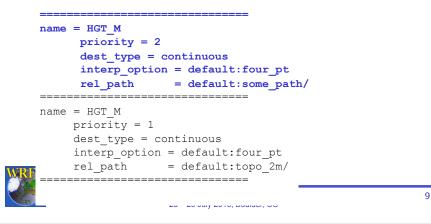
The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO

2) Different resolution data set

Different resolution data sets for an existing field :

Specify the path to the new data set and which interpolation methods should be used for the new resolution in the <u>existing entry for that field.</u>

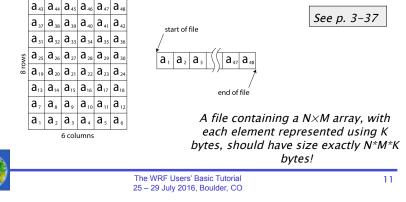
<pre>name = HGT_M priority = 1 dest_type = continuous smooth_option = smth-desmth interp_option = 30s:special(4.0)+four_pt interp_option = my_res:four_pt interp_option = default:four_pt rel_path= 30s:topo_30s/ rel_path= my_res:new_topo_directory/ rel_path= default:topo_2m/</pre>
The MIDE Heavel Devic Tetrain


The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO

6

3) Alternative data sources

Alternative sources for a field that must be used in addition to an existing source :


Add a new entry for the field that has the same name as the field's existing entry, but make priority of new entry <u>higher.</u>

The Geogrid Data Format

The geogrid format is a simple binary raster

- Elements of a rectangular array of data are written, row by row, to a file
- No record markers or any type of metadata are written to this file

Preparing new geogrid data sets

To add a new data source, we need to

- 1) Write the data in the proper binary format
 - See Chapter 3: "Writing Static Data to the Geogrid Binary Format"
 - Can make use of read_geogrid.c and write_geogrid.c
- 2) Create an "index" metadata file for the data set

- This tells geogrid about the projection, coverage, resolution, type, and storage representation of the data set

- 3) Add/edit entry for the data in the GEOGRID.TBL file
 - The change to GEOGRID.TBL will follow one of the three cases mentioned before

The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO

The Geogrid Data Format

Since the contents of the file contain <u>only</u> the values from the array, *care must be taken if using Fortran to write the array*

- Fortran unformatted writes add *record markers* to the beginning and end of each record

– So, rather than $X_1X_2X_3...X_{n-1}X_n$ we get $RX_1X_2X_3...X_{n-1}X_nR$, where R is a record marker

- Instead of Fortran, the C routines read_geogrid.c and write_geogrid.c may be used to read and write binary files
 - these may be called from either Fortran or C

The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO

The Geogrid Data Format

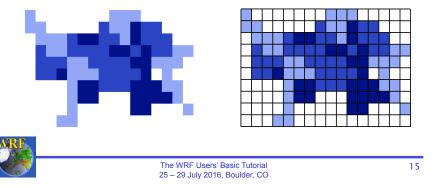
The filenames of geogrid binary files should have the form:

xxxxx-XXXXX.yyyyy-YYYYY

where

XXXXX	is the starting x-index
XXXXX	is the ending x-index
ууууу	is the starting y-index
YYYYY	is the ending y-index

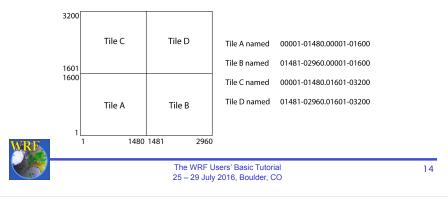
E.g., For a binary file containing an array with 500 columns and 750 rows, the file name would be 00001-00500.00001-00750


The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO

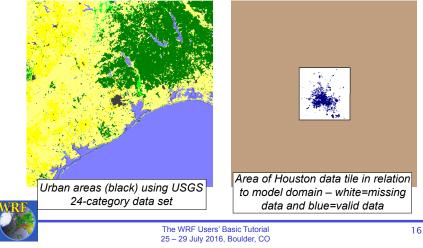
13

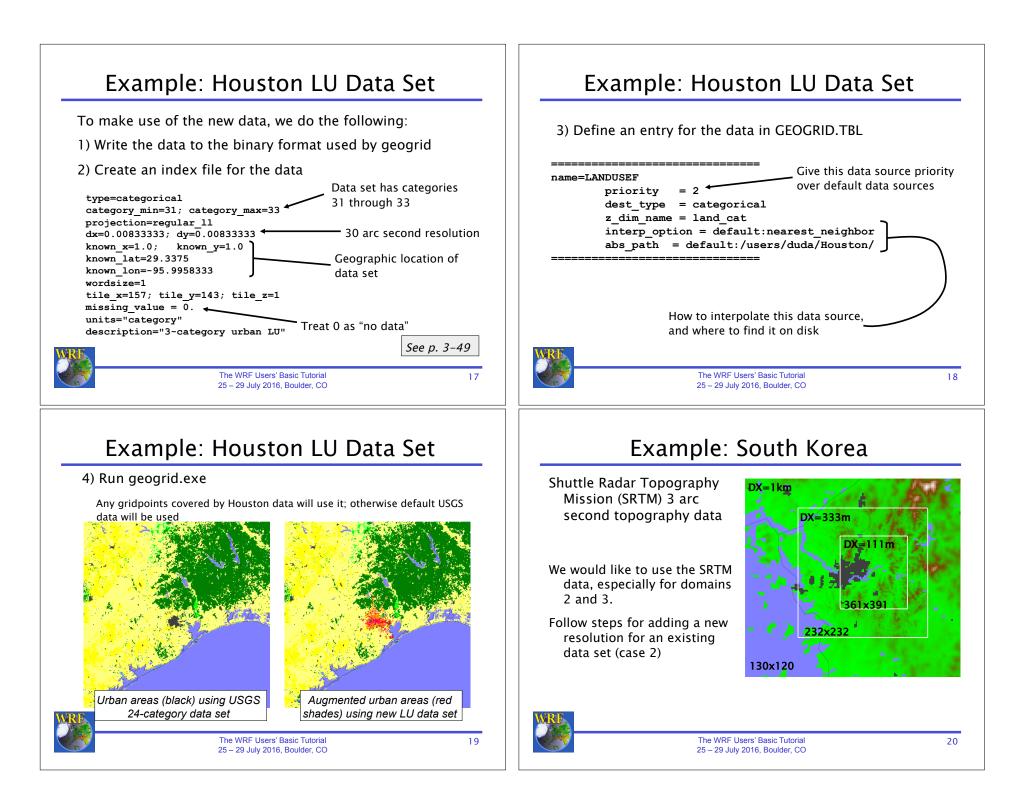
The Geogrid Data Format

If the data do not cover a rectangular region, areas with no data are simply filled with a missing value so that the overall data set is rectangular


• The particular missing value used in the data set is specified in the index metadata file for the data set

The Geogrid Data Format


If the data are not available in a single tile (array), multiple files may be used to store the data


- All tiles must have the same x-dimension
- All tiles must have the same y-dimension
- If necessary, a tile can be "padded" with missing values to expand it to the same size as other tiles in the data set

Example: Houston LU Data Set

- Given dataset for new Houston urban land use categories
 - Regular lat/lon projection, 30" resolution; categories 31, 32 & 33

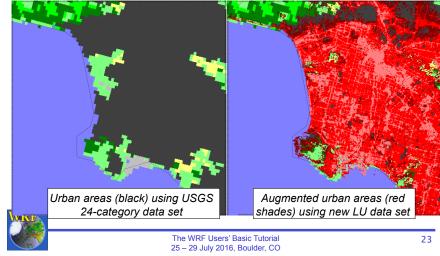
Example: Seoul

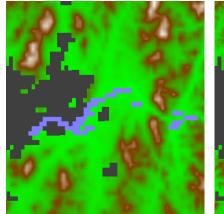
To use the SRTM topography data, we

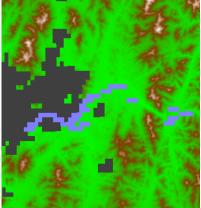
- 1) Write data to geogrid binary format
- 2) Create an index file for the data set

3) Modify the GEOGRID.TBL entries for HGT_M, HGT_U, and HGT_V

ame = HGT M
priority = 1
dest_type = continuous
interp_option = 30s:special(4.0)+four_pt
interp_option = SRTM:four_pt
rel_path = 30s:topo_30s/
rel_path = SRTM:SRTM/


4) Specify that we should interpolate from SRTM in namelist by setting geog data res = '30s','SRTM+30s','SRTM+30s'


The WRF Users' Basic Tutorial 25 - 29 July 2016, Boulder, CO


Another Example: Los Angeles

For Los Angeles, we have a 30-meter resolution, 3 urban land use category data set

Example: Seoul

Domain 3 (DX=111m) using default 30" USGS topography

Domain 3 (DX=111m) using 3" SRTM topography

The WRF Users' Basic Tutorial 25 - 29 July 2016, Boulder, CO

Outline

- The GEOGRID.TBL file
 - What is the GEOGRID.TBL file?
 - Ingesting new static fields
 - Examples: Using high-resolution land use and topography data
- The METGRID.TBL file
 - What is the METGRID.TBL file?
 - Example: Defining interpolation options for a new field
 - Example: Using the METGRID.TBL file for a real-time system
- Utility programs example: fixing "hot lakes"

21

The METGRID.TBL File

- The METGRID.TBL file controls how meteorological fields are interpolated
- Unlike GEOGRID.TBL, METGRID.TBL *does not determine which fields will be processed*, only *how to process them* if they are encountered
- Every field in intermediate files will be interpolated
 - If no entry in METGRID.TBL for a field, a default interpolation scheme (<u>nearest neighbor</u>) will be used
 - It is possible to specify in METGRID.TBL that a field should be discarded

The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO

The METGRID.TBL File

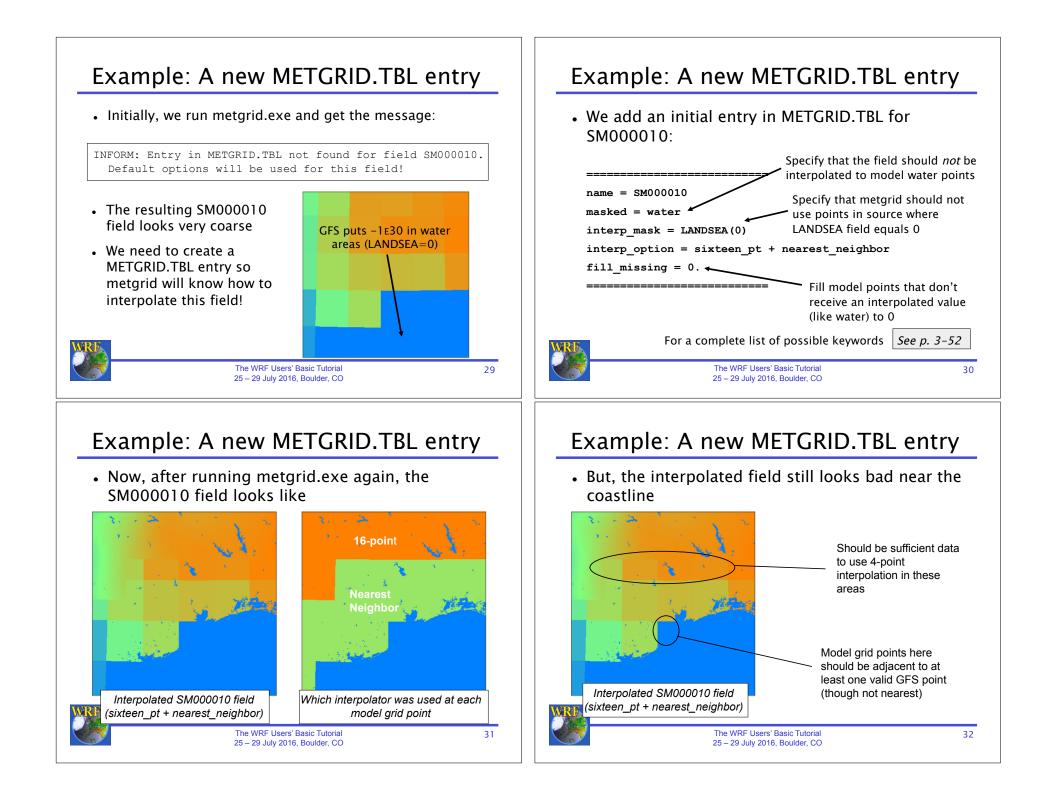
 Example METGRID.TBL entry (for "soil moisture 0-10 cm")

The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO

The METGRID.TBL File

- Suitable entries in METGRID.TBL are provided for common fields
 - Thus, many users will rarely need to edit METGRID.TBL
- When necessary, different interpolation methods (and other options) can be set in METGRID.TBL
 - Interpolation options can depend on the source of a field

25


27

The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO

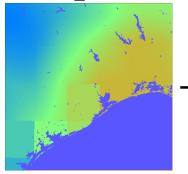
Example: A new METGRID.TBL entry

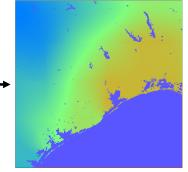
- Suppose we have a 1000x1000 domain over Houston (dx=500 m)
 - This is the same domain as in the urban land use example
- Meteorological data come from 1-degree GFS
 - Note that we will be interpolating 1-degree data onto a 500-m grid!
- We want to create an entry for a new soil moisture field, SM000010

Example: A new METGRID.TBL entry

• Update the METGRID.TBL entry for SM000010

```
name = SM000010
masked = water
interp_mask = LANDSEA(0)
interp_option = sixteen_pt + four_pt + average_4pt
fill_missing = 0.
```

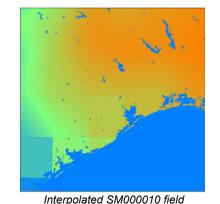

- If 16-pt doesn't work, then try 4-pt before reverting to a 4-point average
 - Note that 4-point average will work anywhere nearest_neighbor would (missing/masked values not counted in the average)



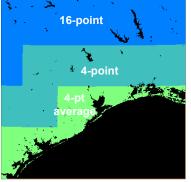
The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO

Example: A new METGRID.TBL entry

 By using wt_average_4pt instead of average_4pt:



sixteen_pt + four_pt + average_4pt


sixteen_pt + four_pt + wt_average_4pt

Example: A new METGRID.TBL entry

• The resulting field, below-left:

(sixteen pt + four pt + average 4pt)

Which interpolator was used at each model grid point

The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO

34

METGRID.TBL: Real-time System Example

- Suppose we have a real-time system that:
 - Uses GFS for initial and boundary conditions
 - When possible (i.e., if the files are available soon enough) uses *soil moisture* and *soil temperature* fields from AGRMET
- In our system, it may occasionally happen that the AGRMET files are not ready when we want to start our WRF run
 - Because system is real-time, we want to proceed using just the GFS land surface fields!

The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO

35

33

The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO

METGRID.TBL: Real-time System Example

• We already know how to run ungrib on multiple sources of data to get

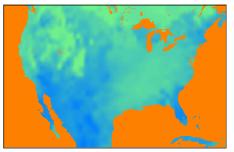
GFS:YYYY-MM-DD HH

and

AGRMET:YYYY-MM-DD_HH

intermediate files, and specify

fg_name = 'GFS', 'AGRMET',


in the &metgrid namelist record to use both sources

The WRF Users' Basic Tutorial 25 - 29 July 2016, Boulder, CO

METGRID.TBL: Real-time System Example

And the 0–10 cm soil moisture field (SM000010) looks like:

The WRF Users' Basic Tutorial 25 - 29 July 2016, Boulder, CO METGRID.TBL: Real-time System Example

Without further changes, what happens if:

Only GFS data are available when we run metgrid

Metgrid runs and warns that no AGRMET data files were found:

Processing 2012-04-01 00 GFS AGRMET WARNING: Couldn't open file AGRMET:2012-04-01 00 for input.

Metgrid will finish, but will only use GFS data!

The WRF Users' Basic Tutorial 25 - 29 July 2016, Boulder, CO 38

METGRID.TBL: Real-time System Example

However, what happens if:

Both GFS and AGRMET files are available when we *run metgrid?*

Our SM000010 field looks like: We get unreasonable values with magnitude ~1E30 near land-water boundaries! The WRF Users' Basic Tutorial 40 25 - 29 July 2016, Boulder, CO

39

See p. 3-24

37

METGRID.TBL: Real-time System Example

Why are there bad values near coastlines? What went wrong?

In both Vtable.GFS and Vtable.AGRMET, the land-sea mask field is named LANDSEA

- In METGRID.TBL, our entry for SM000010 says:

name=SM000010 interp_option=sixteen_pt+four_pt+wt_average_4pt+search masked=water interp_mask=LANDSEA(0) fill_mIssing=1. flag in_output=FLAG_SM000010

WRF

The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO

METGRID.TBL: Real-time System Example

When metgrid interpolated SM000010, it used the GFS landmask for a field masked by the AGRMET landmask!

GFS LANDSEA field

AGRMET LANDSEA field

Note the disagreement between the two data sources near coastlines.

The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO

METGRID.TBL: Real-time System Example

After metgrid reads in LANDSEA from GFS file *to use as an interpolation mask*, it ignored the LANDSEA field from AGRMET *for use as a mask*.

- So, metgrid used the GFS LANDSEA mask even when interpolating AGRMET data!

41

43

The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO

42

METGRID.TBL: Real-time System Example

Solution:

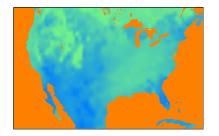
- Rename LANDSEA to AGR_LAND in Vtable.AGRMET
- Rename LANDSEA to GFS_LAND in Vtable.GFS
- Create separate entries in METGRID.TBL

one for GFS SM000010 field

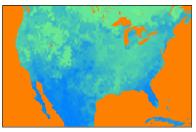
another for AGRMET SM000010 field

METGRID.TBL: Real-time System Example

name=SM000010; from_input=AGRMET interp option=sixteen_pt+four_pt+wt_average_4pt+search masked=water interp_mask=AGR_LAND(-1.E30) fill_missing=1. flag_in_output=FLAG_SM000010



The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO


45

METGRID.TBL: Real-time System Example

With modified Vtables and METGRID.TBL:

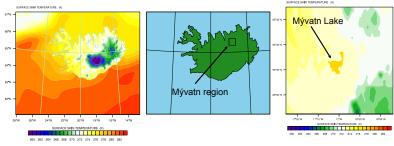
The SM000010 field when only GFS files are available

The SM000010 field when both GFS and AGRMET files are available

The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO

46

Outline


- The GEOGRID.TBL file
 - What is the GEOGRID.TBL file?
 - Ingesting new static fields
 - Examples: Using high-resolution land use and topography data
- The METGRID.TBL file
 - What is the METGRID.TBL file?
 - Example: Defining interpolation options for a new field
 - Example: Using the METGRID.TBL file for a real-time system
- Utility programs example: fixing "hot lakes"

The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO 47

Motivating Problem

The "Hot Lake" problem: Inland water bodies that are not resolved by SST data sets often receive extrapolated values from nearby oceans or other resolved water bodies.

Above left: Skin temperature field (TSK) for Iceland and surrounding ocean on 26 January 2011 1200 UTC from NCEP GFS and RTG SST data.

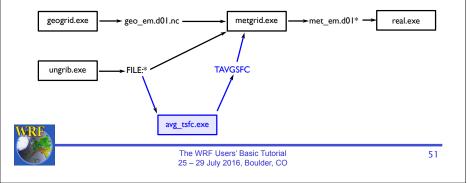

Above right: TSK in the Mývatn region. SST for Mývatn Lake is ~277 K!

Approach

In WRF v3.3 and later, let the *real* preprocessor know which water points are inland water bodies, and provide it a more accurate estimate of SST to be used only over these water bodies.

1) Identify inland water bodies in the land cover data set

- 2) Provide a suitable proxy for SST field over inland water bodies
 - E.g., Average surface air temperature for X days prior, 273 K for frozen lakes, etc.
- 3) Modify the SST field in the WRF input file
 - Use new capability in v3.3 real.exe program



The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO

Creating a Proxy SST Field

The *avg_tsfc.exe* utility program may be used to compute the average 2-m air temperature field for any number of full diurnal cycles

- Number of cycles determined by available intermediate files and date range in namelist
- The resulting TAVGSFC intermediate file may be provided to the metgrid program

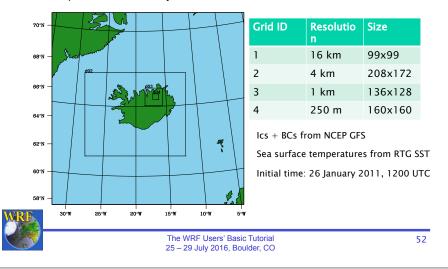
Identifying Lakes

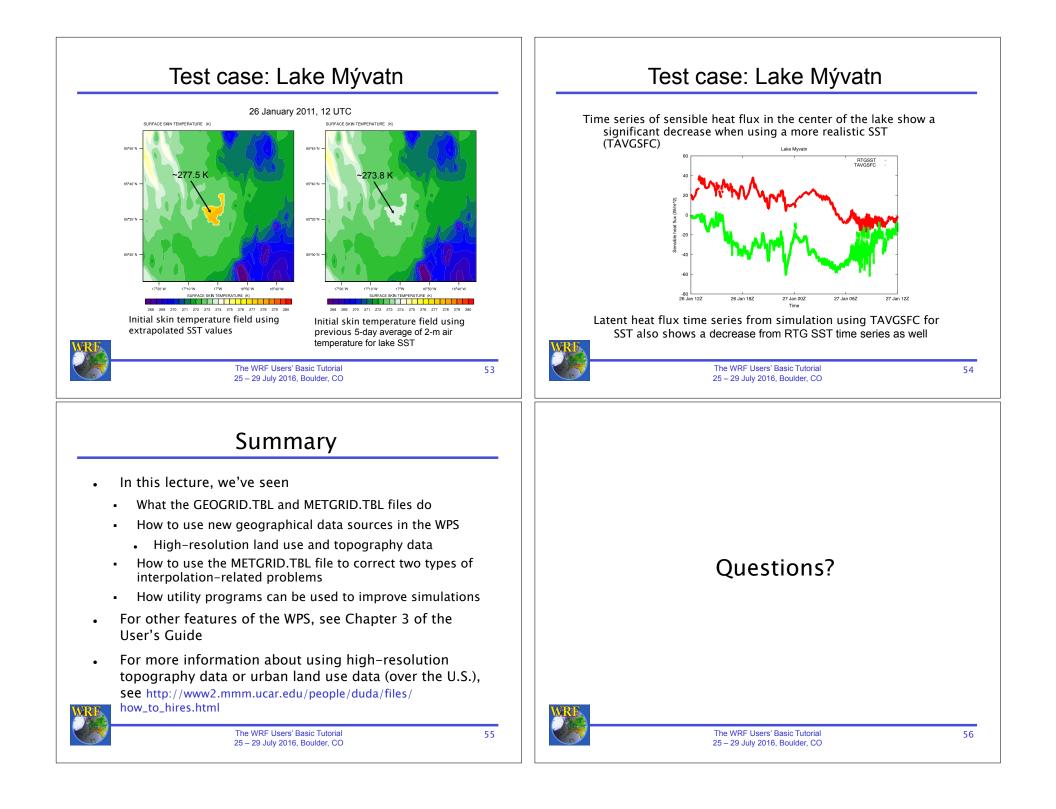
Some data sets already identify lakes with separate categories

- MODIS, CORINE
- For others, we need a way to do this
- Should be automated
 - don't want to spend long hours clicking on pixels for each data set
- Should be tunable
 - what constitutes a lake will naturally depend on what our SST data set is able to resolve
- Ideally, would not require auxiliary data

In namelist.wps, set:

- geog_data_res = "usgs_lakes+30s" for USGS land use (16=ocean, 28=lake)
- geog_data_res = "modis_lakes+30s" for MODIS land use (17=ocean, 21=lake)


49


The WRF Users' Basic Tutorial 25 – 29 July 2016, Boulder, CO

50

Test case: Lake Mývatn

To confirm that everything is working as expected, try correcting the temperature for Lake Mývatn in the winter

