WRF Data and Utilities

Kelly Werner July 2017

Supported Post-processing Packages

http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.8/contents.html

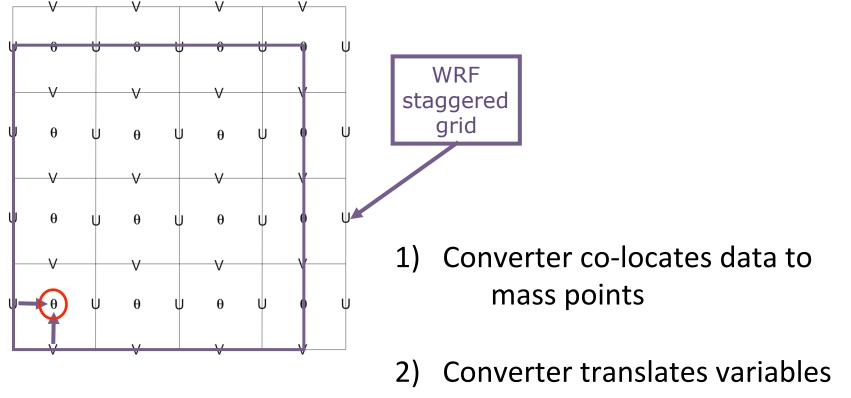
Package	Users' Guide Page #	Information	
NCL	9-2	Graphical package Supported by NCAR/CISL (wrfhelp@ucar.edu and ncl-talk@ucar.edu)	
ARWpost	9-29	Converter (GrADS) (wrfhelp@ucar.edu)	
RIP4	9-20	Converter and interface to graphical Package, NCAR graphics (wrfhelp@ucar.edu)	
UPP	9-36	Converter (GrADS & GEMPAK) (upp-help@ucar.edu)	
VAPOR	9-38	Converter and graphical package Supported by VAPOR (vapor@ucar.edu)	
IDV	None – see unidata.ucar.edu	GRIB (from UPP) GEMPAK (from wrf2gem) Vis5d CF compliant data (from wrf_to_cf) Supported by unidata (support@unidata.ucar.edu)	
GEMPAK	None - see: unidata.ucar.edu/ software/gempak	Data from wrf2gem or UPP Supported by unidata (support@unidata.ucar.edu)	

Choosing the Right Tool

- Can it read your data?
- Will you need to pre-process the data first?
- Is it purely a visualization tool, or does it include post-processing?
- Can it handle big datasets?
- Which diagnostic/statistical functions does it have?
- How easy is it to add diagnostics?
- 3D or 2D visualization?

- Can it handle staggered grids?
- How are data below the ground handled?
- Vertical grids?
- How are model time stamps handled?
- Easy to use?
- Cost of package?
- How well supported is it?

Data Handling


	NCL	RIP4	GrADS	UPP	VAPOR	IDV
netCDF		ripdp	ARWpost	converter	converter	converter
GRIB						
ASCII						
shapefiles						
geogrid & metgrid output						
intermediate file format	V6.2.0 V6.3.0					
wrfinput data						
Idealized data						
wrfoutput						
big data						

Post-processing

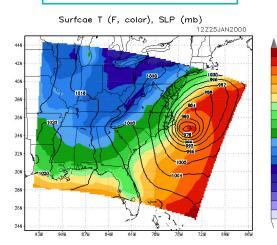
	NCL	RIP4	GrADS	UPP	VAPOR	IDV
Post-processing						
Data output						
3D						
diagnostics	some	a lot	some	some	limited	limited
Add diagnostics	Very easy	easy	easy	Relatively easy	Not as easy	Not as easy
Vertical output Coordinate	Model pressure height	Model pressure height	Model pressure height	pressure	model	model
Extrapolate Below ground						

Model Staggering

Why is a converter necessary if a package can display netCDF files?

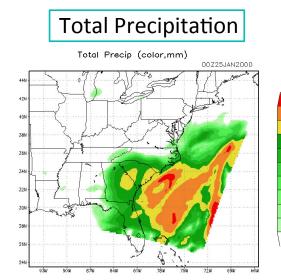
e.g., "T" is not really temp. Must
 add 300 for actual temp (K)

ARWpost


ARWpost: General Information

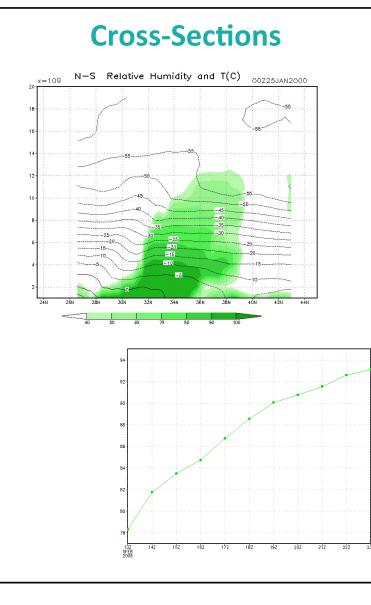
- Converter
 - Reads in wrf-arw model data, creates GrADS output files (.ctl)
 - Requires GrADS to display
 - GrADS not supported by NCAR
- GrADS software is only needed to display data, not needed to compile the code
 - http://www.iges.org/grads/grads.html
- Generate a number of graphical plots
 - Horizonal
 - Cross-section
 - skewT
 - Meteogram
 - Panel

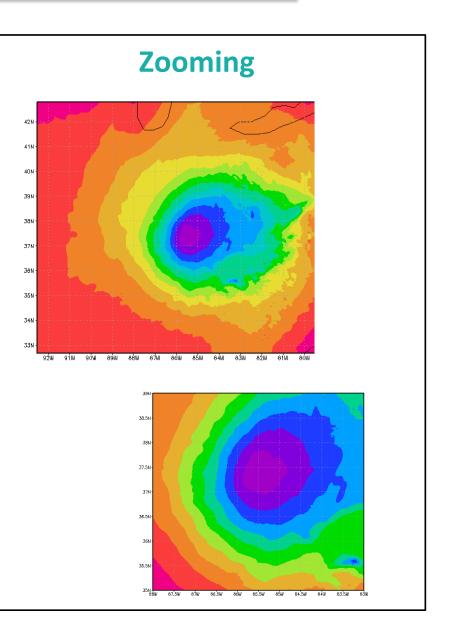
- Download Code
 - http://www2.mmm.ucar.edu/wrf/ users/download/get_sources.html
- Online Tutorial
 - http://www2.mmm.ucar.edu/wrf/ users/graphics/ARWpost/ARWpost.htm


ARWpost: Example Plots

Surface Temp

-20


Vegetation Fraction Vegatation Fraction WRF MASS INPUT 12Z24JAN2000 42N 40N 38N 36N 26N 24N 93W 90W 87W 841 726 69W



25.6

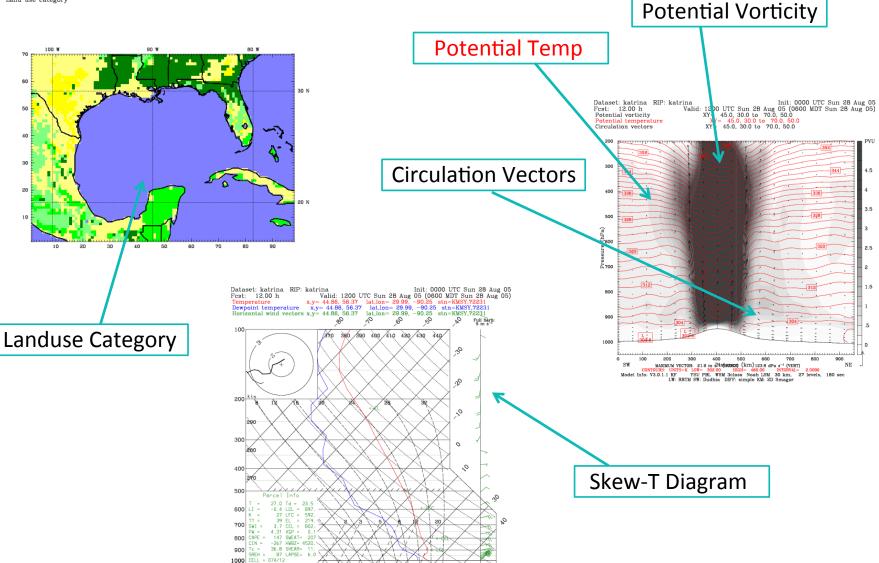
0.8 - 0.4 - 0.2

ARWpost: Example Functions

ARWpost: Diagnostics

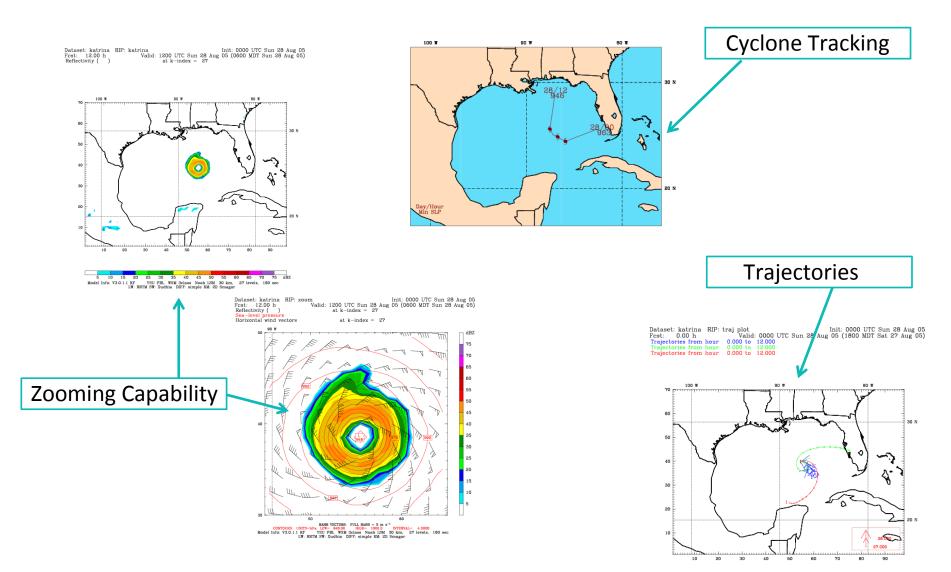
- cape 3d cape
- cin 3d cin
- mcape maximum cape
- mcin minimum cin
- clfr low/middle/high cloud fraction
- dbz 3d reflectivity
- max_dbz maximum reflectivity
- geopt geopotential
- height model height in km
- Icl lifting condensation level
- Ifc level of free convection
- pressure full model pressure in hPa
- rh relative humididy
- rh2 2 m relative humidity

- theta potential temperature
- tc temperature in degrees C
- tk temperature in degrees K
- td dew point temperature in degrees C
- td2 2m dew point temperature in degrees C
- slp sea level pressure
- umet & vmet winds rotated to Earth coordinates
- u10m & v10m 10 m winds rotated to Earth coordinates
- wdir wind direction
- wspd wind speed coordinates
- wd10 10 m wind direction
- ws10 10 m wind speed

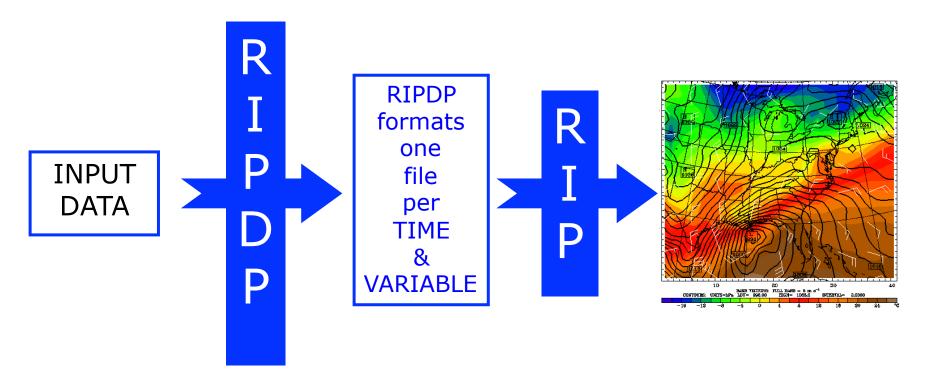

ARWpost: Scripts

Script Name	Description
cbar.gs	Plots a color bar on shaded plots
rgbset.gs	Allows you to add/change colors from color # 20 – 99
skew.gs	Program to plot a skewT
plot_all.gs	Automatically finds all .ctl files in the directory and lists them so the user can pick when to use, will plot all fields chosen
rain.gs (real data only)	Plots total rainfall (must have data that contain fields RAINC and RAINNC)
cross_z.gs (real data only)	Plots a NS and EW cross section of RH and T (C)

RIP4


RIP4: Example Plots

Dataset: katrina RIP: katrina Init: 0000 UTC Sun 28 Aug 05 Fost: 0.00 h Valid: 0000 UTC Sun 28 Aug 05 (1800 MDT Sat 27 Aug 05) Land use category



RIP4: Example Plots

Dataset: katrina RIP: typhoon Init: 0000 UTC Sun 28 Aug 05 Fest: 0.00 h Valid: 0000 UTC Sun 28 Aug 05 (1800 MDT Sat 27 Aug 05) Typhoon Track

RIP4: Program Flow

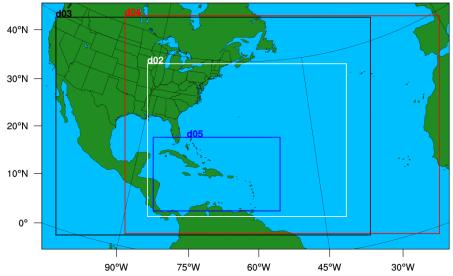
RIP4: General Information

- Requires NCAR Graphics Libraries
 - <u>http://www.ncl.ucar.edu</u>
- Source Code
 - <u>http://www2.mmm.ucar.edu/wrf/users/download/</u> <u>get_source.html</u>
- Documentation
 - Included in program's tar file (in Doc/ directory)
 - <u>http://www2.mmm.ucar.edu/wrf/users/docs/ripug.htm</u>
- Online Tutorial
 - <u>http://www2.mmm.ucar.edu/wrf/users/graphics/RIP4/</u> <u>RIP4.htm</u>

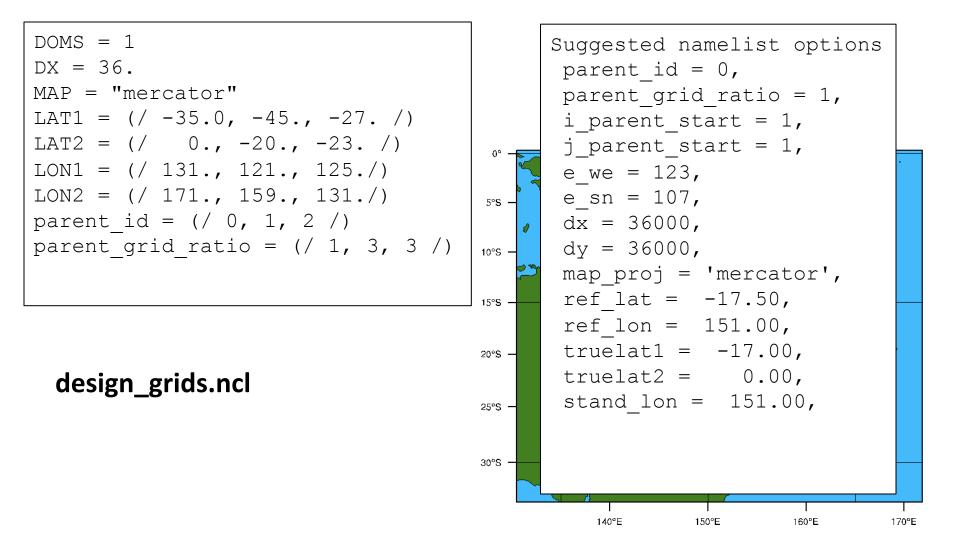
- Graphics
- Designing a model domain
- OBSGRID
- netCDF tools
- Data
- MET

Graphics: ImageMagick

http://www.imagemagick.org

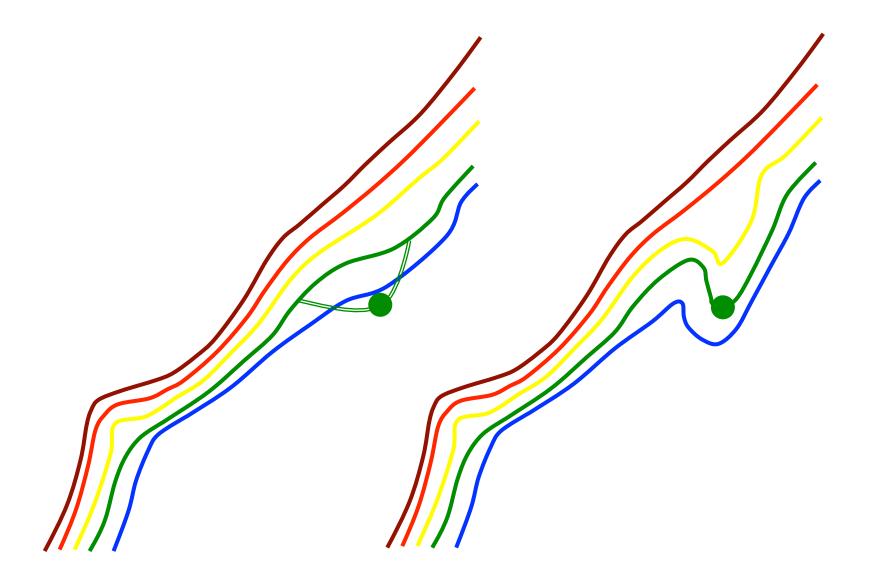

- Converts graphical files from one format to another *convert file.*pdf *file.*png *convert file.*png *file.*bmp
- Many options available
 - Rotate frames, trim white space, etc.
- Can make movies
 - Can create individual frames for each image
- Maintains high resolution great for publishing!
- Cannot deal with .ncgm files

Model Domain Design


```
mpres@mpFillColors
 (/"background", "DeepSkyBlue",
 "ForestGreen", "DeepSkyBlue",
 "transparent"/)
mpres@mpGridSpacingF
                       = 45
lnres@domLineColors
                          (/
 "white", "Red", "Red", "Blue" /)
mpres@mpOutlineBoundarySets
 "NoBoundaries"
                 ; "Geophysical"
 "National"
                 : "USStates"
 "GeophysicalAndUSStates"
 "AllBoundaries"
pares = True
pmres@gsMarkerColor = "White"
pmres@gsMarkerIndex = 16
pmres@gsMarkerSizeF = 0.01
 gsn polymarker(wks,mp,-77.26,38.56
                pmres)
```

- plotgrids.ncl
 - WPS/util/plotgrids.ncl
 - Reads namelist information to generate plot
 - X11, png, pdf

Model Domain Design



OBSGRID

OBSGRID

- To improve a first-guess gridded analysis by incorporating additional observational information
 - Traditionally first-guess analysis came from low-resolution global analysis and forecast grids
 - These days, higher-resolution, regional scale analyses are more readily available
- When is this method useful?
 - When using very coarse resolution first-guess input data
 - If you conducted a field campaign and have acquired very high-resolution station data (for example)

OBSGRID: Basic Concept

OBSGRID: How to Run

• Get the source code

http://www2.mmm.ucar.edu/wrf/users/downloads.html

- Compile
- Prepare observation files
- Edit the namelist.oa
- Link in met_em* files from WPS
- Run the program
 - ./obsgrid.exe
- Check your output

See the WRF Users' Guide for detailed information http://www2.mmm.ucar.edu/wrf/users/ docs/user_guide_V3.8/ users_guide_chap7.htm

OBSGRID: How to Use to Run WRF

- Link the 'metoa_em*' files to WRF running directory
 In -sf ../../../OBSGRID/metoa_em.d01.* .
- Add the following to the &time_control section of the namelist auxinput1_inname = "metoa_em.d<domain>.<date>"
- Run real.exe
- Run wrf.exe

OBSGRID - Grid Nudging - Surface

- If you are interested in doing surface analysis nudging
- OBSGRID creates a file called wrfsfdda_d0*
- How to use this:
 - In &fdda, set grid_fdda = 1 and grid_sfdda = 1
 - Run real.exe and get a file called wrffdda_d01, and use with wrfsfdda_d01, wrfinput_d01, and wrfbdy_d01
 - Run wrf.exe
- For more information, refer to Jimy Dudhia's ARW Nudging talk

OBSGRID – **Observation Nudging**

- Allows for input observation data & quality control
- Used if you have a large number of extra observations, and a single case study (not recommended for climate studies)
- Can get obs data from CISL (little R format)
- How to use this
 - OBSGRID creates a files called OBSDOMAIN_XXX (can concatenate files into 1: OBSDOMAIN_101)
 - In &fdda, add obs_nudge_opt = 1
 - In &time_control, add auxinput11_interval_s = 180, auxinput11_end_h = 24
 - Will need OBSDOMAIN_101, wrfinput_d01 and wrfbdy_d01 files
 - Run real.exe and wrf.exe as usual
- For more information, see <u>http://www2.mmm.ucar.edu/wrf/users/wrfv3.1/</u> <u>How_to_run_obs_fdda.html</u> and Jimy Dudhia's ARW Nudging talk

- netCDF Operators are command-line programs that take netCDF (HDF and/or DAP) files as input, then
 operate (e.g., derive new data, compute stats, print, manipulate metadata) and output to the screen
 or files in various formats (text, binary, netCDF, etc.)
- ncdiff

Shows the differences between 2 files
 ncdiff input1.nc input2.nc output.nc

- ncrcat (nc cat)
 - Writes specified variables/times to a new file

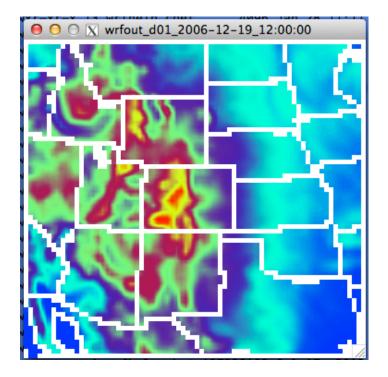
ncrcat -d Time,0,231 -v RAINNC wrfout* RAINNC.nc

- ncra (nc average)
 - Averages variables and writes to a new file
 - ncra -v OLR wrfout* -o OLR.nc
- ncks (nc kitchen sink)
 - Combination of all NCO tools in 1
 - Specifically nice for splitting files

```
ncks -d Time,1,1 wrfout -o wrfout1.nc
```

NCO Tools: Other Available Operators

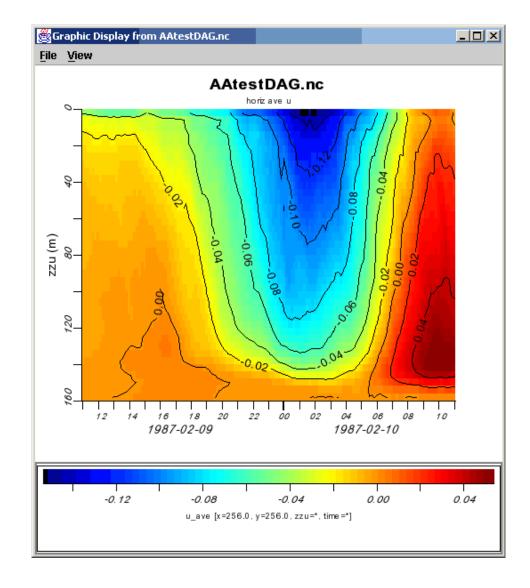
- **ncap2:** arithmetic processor
- **ncatted:** ATTribute editor
- ncbo: binary operator (includes ncadd, ncsubtract, ncmultiply, ncdivide)
- **ncea:** ensemble averager
- ncecat: ensemble conCATenator
- ncflint: FiLe INTerpolator
- ncpdq: permute dimensions quickly, pack data quietly
- ncrename: RENAME-er
- ncwa: weighted averager



http://meteora.ucsd.edu/~pierce/ncview_home_page.html

			and the second se
	no variable selected	100 C	
Noview 1.93a David W. Pierce 1 Feb 2006			and the second se
*** SELECT A VARIABLE TO START ***		100 C	
		Same A sugar	
		A 100	
Quit ->1 📢 🖌 🕨 🕨 Edit ? Delay	: Opts		teres and the second
Quit ->1 (Delay		AND INCOME.	
Jgauss Inv P Inv C Mag X1 Linear Axes Ram	ge blovap Print	State of the local division of the local div	-
(18) 1 d vars (48) 2 d vars (13) 3 d vars			
Dim: Name: Min: Current: Ma	x: Units:		
Time Min: Current: M	ax: Units:		
bottom_top Min: Current: M	ax: Units:		
south_north Min: Current: M	ax: Units:		
	<u>onus.</u>		
west_east_st; Min: Current: M	ax: Units:		

ncview


000	O X Ncview 1.93
	Noview 1.93g David W. Pierce 24 February 2009
variab	le=HGT
frame	1/1 (136749605 bnds:3.57019e-264 -> 1.88836e-307)
displa	yed range: -63.8264 to 3459.44 m
Currei	nt: (i=17, j=68) 9.96921e+36 (x=-113.1825, y=48.2066)
Quit	t ->1 ◀ ◀ 📕 ➡ Edit ? Delay: Opts
3gau:	ss Inv P Inv C M X5 Linear Axes Range Bi-lin Print
00	
Ove	erlays:
	None
- 0	0.8 degree coastlines
0	0.08 degree coastlines
	USA states
	custom
4	Click to select custom overlay iile
Mat	hod to use when shrinking data:
	-
	Average (Mean) Most common value (Mode)
ОК	Cancel

- Beginning V3.7
- Works with wrfout* files
- Must have 1 time period per file

http://www.epic.noaa.gov/java/ncBrowse/

ncdump

- Reads a netCDF dataset and prints information from that dataset
- ncdump -h *file* Prints header (inclusive list of variables in the file)
- ncdump -v VAR file
 - Prints data for the variable 'VAR'
- ncdump -v Times file
 - Prints the times that are included in the file

ncdump –v Times

```
netcdf wrfout d01 2000-01-24 12:00:00 {
dimensions:
        Time = UNLIMITED ; // (3 currently)
        DateStrLen = 19 ;
        west east = 73;
        south north = 60 ;
        west east stag = 74 ;
        bottom top = 27;
        south north stag = 61 ;
        bottom top stag = 28;
variables:
        char Times(Time, DateStrLen) ;
        float LU INDEX(Time, south north, west east) ;
                LU INDEX: FieldType = 104 ;
                LU INDEX: MemoryOrder = "XY ";
        LU INDEX: description = "LAND USE CATEGORY" ;
                LU INDEX: units = "" ;
                LU INDEX:stagger = "" ;
.....
.....
global attributes:
                :TITLE = " OUTPUT FROM WRF V3.4.1 MODEL";
                :START DATE = "2000-01-24 12:00:00" ;
                :WEST-EAST GRID DIMENSION = 74 ;
                :SOUTH-NORTH GRID DIMENSION = 61 ;
                :BOTTOM-TOP GRID DIMENSION = 28 ;
                :DX = 30000.f;
                :DY = 30000.f;
.....
data:
 Times =
  "2000-01-24 12:00:00",
  "2000-01-24 18:00:00",
  "2000-01-25 00:00:00"
```

Input Data

Input Data: Mandatory Fields

• 3D Data (data on pressure levels, for example)

Temperature U and V components of wind Geopotential Height Relative Humidity/Specific Humidity

2D Data

Surface pressure Mean sea-level pressure Skin temperature/SST 2 meter temperature and relative humidity 10 meter U and V components of wind Soil data (temperature and moisture) and soil height

Recommended Fields

LANDSEA mask field for input data Water equivalent snow depth SEAICE

External Data Sources: Global

Name	Resolution	Coverage	Temporal Availability	Website
NCEP/NCAR Reanalysis (R1/NNRP)	209 km 6-hourly	Global	Jan 1948 – present	http://rda.ucar.edu/ datasets/ds090.0
NCEP/DOE Reanalysis (R2)	209 km 6-hourly	Global	Jan 1979 – present	http://rda.ucar.edu/ datasets/ds091.0
ERA Interim Data	1.125° - 0.703° 6-hourly	Global	Jan 1979 – present	http://rda.ucar.edu/ datasets/ds627.0
ECMWF's Operational Model Analysis	Varying		Jan 2011 – present	http://rda.ucar.edu/ datasets/ds113.0
NCEP GDAS/FNL Reanalysis	0.25° 6-hourly	Global	July 2015 – present	http://rda.ucar.edu/ datasets/ds083.3
GFS Real-time	1°	Global		<u>ftp://</u> <u>ftpprd.ncep.noaa.gov/</u> <u>pub/data/nccf/com/</u> <u>gfs</u>
NCEP GFS/FNL Reanalysis	1° 6-hourly	Global	Aug 1999 – present	http://rda.ucar.edu/ datasets/ds083.2
GFS Gridded Model Data	0.5° 24-hourly	Global	Dec 2002 – present	http://rda.ucar.edu/ datasets/ds335.0
NCEP GFS 0.25°	0.25° 3-hourly & 12-hourly	Global	Jan 2015 – present	http://rda.ucar.edu/ datasets/ds084.1

External Data Sources: North America

Name	Resolution	Coverage	Temporal Availability	Website
NAM Real-time	32/12 km 6-hourly	North America		ftp:// ftpprd.ncep.noaa.go ⊻ /pub/data/nccf/ com/nam
NAM Analysis	12 km 6-hourly	North America	Jan 2012 – present	http://rda.ucar.edu/ datasets/ds609.0
GCIP NCEP Eta	40 km 3-hourly & 6-hourly	North America	April 1995 – present	http://rda.ucar.edu/ datasets/ds609.2
NCEP NARR	32 km 3-hourly	North America	Nov 1979 – present	http://rda.ucar.edu/ datasets/ds608.0

External Data Sources: Climate

Name	Resolution	Coverage	Temporal Availability	Website
NCEP Climate Forecast System Reanalysis (CFSR)	0.3° to 2.5° 6-hourly	Global	Jan 1979 – Dec 2010	http://rda.ucar.edu/ datasets/ds093.0
NCEP Climate Forecast System Reanalysis II (CFSv2)	0.2° to 2.5° 6-hourly	Global	Jan 2011 – present	http://rda.ucar.edu/ datasets/ds094.0
NCAR CESM CMIP5 data (netCDF format)	6-hourly	Global	Jan 1950 – 2100	http://rda.ucar.edu/ datasets/ds316.0
NCAR CESM CMIP5 data (IM – Bias Corrected)	6-hourly	Global	Jan 1951 – 2100	http://rda.ucar.edu/ datasets/ds316.1
SST DATA				
NCEP SST Analysis	1° - 1/12°	Global		<u>http://</u> polar.ncep.noaa.gov <u>/sst</u>
NOMAD3 SST	1° - 0.25°	Global	Jan 1854 – present (depending which product)	<u>http://</u> <u>nomads.ncdc.noaa.g</u> <u>ov/data.php</u>
NCEP & NCDC Reconstructed SST	1° - 2°	Global	Jan 1854 – Dec 2015	http://rda.ucar.edu/ datasets/ds277.0

External Data Sources: NOMADS

http://nomads.ncdc.noaa.gov

NOAA National Operational Model Archive & Distribution System

Data Access

Inventory

Documentation User Guide

NCDC Model Data Pages

NOMADS Project

Partners

Publications & Presentations

Service Records Retention System
Plans for the National Climate Model Portal

Contact Us Contact Info The NOAA National Operational Model Archive and Distribution System (NOMADS) is a Web-services based project providing both real-time and retrospective format independent access to climate and weather model data.

Update: 11.10.15

Website appearance changes. We are upgrading our web appearance. <u>Click</u> here to view our new pages.

Important Notice: 12.17.15

Plot | FTP4U and offline ordering change.

Our offline ordering interface has transitioned from the Plot | FTP4U system to the <u>HAS</u> <u>website</u>. Links to the HAS website for each product have been added to the NOMADS Data Access page. The Plot | FTP4U system is still available for online data. NAM GFS RUC CFS NARR R1/R2 SST

DOC » NOAA » NESDIS » NCEI » NOMADS

Protecting Your Privacy

ÚSA.gov

Disclaimer

Search NCEI

GRIB Data Handling

- Documents and decoders
 - GRIB1 and GRIB2
 wgrib, wgrib2, unpackgrib2.c, grib2to1.c
 <u>http://rda.ucar.edu/#!GRIB</u>
- g1print.exe and g2print.exe
 - Show data available in GRIB1 and GRIB2 files
 - Available from util/ directory in WPS
- grib2ctl.pl
 - Create .ctl and .idx files, so that you can plot GRIB files with GrADS
 - <u>http://www.cpc.ncep.noaa.gov/products/wesley/grib2ctl.html</u>
- ncl_convert2nc

http://www.ncl.ucar.edu/Document/Tools/ncl_convert2nc.shtml

Writing Intermediate File Format

- <u>http://www2.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap3.htm#_Writing_Meteorological_Data</u>
- wrf_wps_write_int

FIELD = "SST" UNITS = "K" DESC = "Sea Surface Temperature"

= "ERA-I Data"
= 0
= "SWCORNER"
= 0.0
= -90.0
= 1.25
= 0.942408
= False
= "2015-07-26_00:00:00"
= 200100.

wrf_wps_wrtie_int(IM_name,FIELD,UNITS,DESC,VAR(:,:),opt)

Reading Intermediate Format Files

wrf_wps_read_int

! opens file

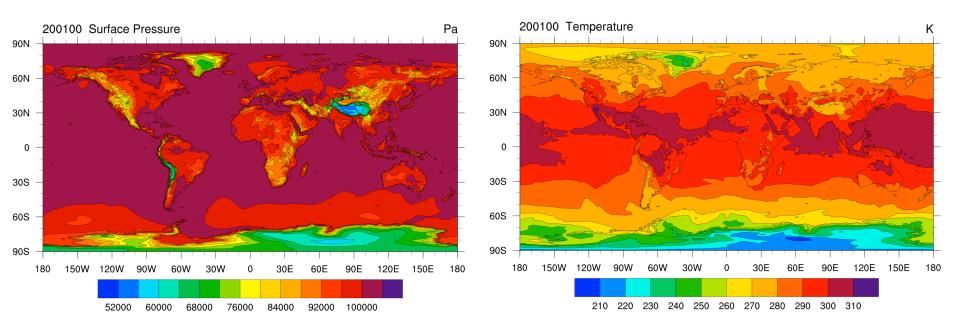
istatus = wrf_wps_open_int(filename)

! reads header

wrf_wps_rdhead_int(istatus,head_real,field,h
date, \
units,map_source,desc)

! reads slab

Slab = wrf_wps_rddata_int(istatus,nx,ny)

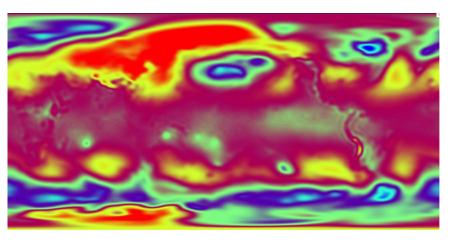

! Loop until reaching the end of the file

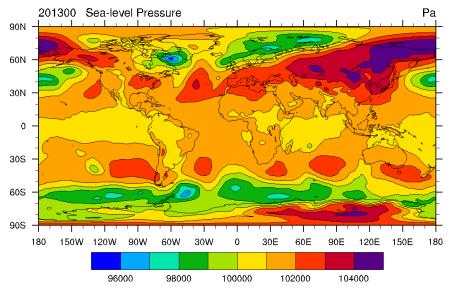
rd_intermediate

```
FIELD = TT
UNITS = K DESCRIPTION = TEMPERATURE
DATE = 2000-01-24_12:00:00 FCST = 0.000000
SOURCE = unknown model from NCEP GRID 212
LEVEL = 200100.000000
I,J DIMS = 185, 129
IPROJ = 1
    REF_X, REF_Y = 1.000000, 1.000000
    REF_LAT, REF_LON = 12.190000, -133.459000
    DX, DY = 40.635250, 40.635250
    TRUELAT1 = 25.000002
DATA(1,1) = 295.910950
```

Utility: plotfmt

• The plotfmt program plots the fields in the ungribbed intermediate files ncl plotfmt.ncl `filename="FNL:2007-09-15 00"'


Plotting Intermediate Files in netCDF Format


- Use the utility int2nc.exe
 - Converts intermediate files created by ungrib.exe to netcdf format
 - ./int2nc.exe
- To plot: plotfmt_nc.ncl

ncl plotfmt_nc.ncl `inputFILE="FNL:2007-09-15_00"'

Plot Using ncview

Other Utilities

- Additional utilities
 - read_wrf_nc: reads WRF netCDF file, outputs various data
 - iowrf: thins or extracts a box from WRF netCDF files
 - wrf_interp: interpolates WRF output files to pressure, height-agl, height-msl, potential temp, and equivalent potential temp, and can perform underground extrapolation
 - p_interp: converts wrfout data to pressure levels
 - v_interp: adds vertical levels in WRF input and boundary files
 - diffwrf: performs several functions, including making comparisons of two WRF files
 - For more details on the above utilities, see:

http://www2.mmm.ucar.edu/wrf/users/utilities/util.htm

• To download utilities:

http://www2.mmm.ucar.edu/wrf/users/download/get_sources.html

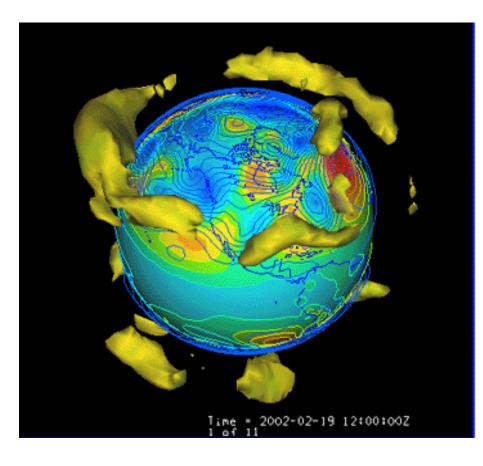
Special WRF Output Variables

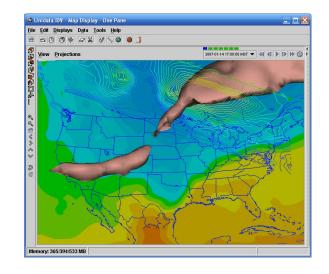
 The WRF model outputs the state variables defined in the Registry file, and these state variables are used in the model's prognostic equations. Some of these variables are perturbation fields and therefore, the following definitions for reconstructing meteorological variables are necessary:

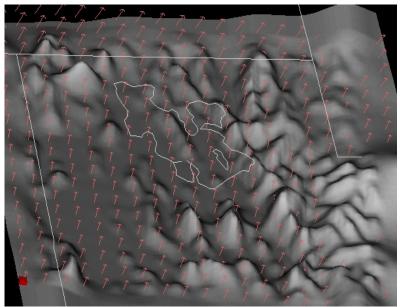
Total geopotential	PH + PHB	
Total geopotential height in m	(PH + PHB) / 9.81	
Total potential temp in K	T + 300	
Total pressure in mb	(P + PB) * 0.01	
Wind components, grid relative	U, V	
Surface pressure in Pa	Psfc	
Surface winds, grid relative	U10, V10 (valid at mass points)	
Surface temp and mixing ratio	T2, Q2	

See WRFV3/Registry/Registry.EM_COMMON for description of variables

MET Verification Software


- Model Evaluation Tools (MET)
- Provides all the basics (e.g., RMSE, bias, skill scores)
- Provides
 - Advanced spatial methods (wavelets, objects)
 - Confidence intervals
- Download it http://www.dtcenter.org/met/users/downloads/
- Support met_help@ucar.edu
- Documentation


http://www.dtcenter.org/met/users/docs/overview.php


IDV: General Information

- Integrated Data Viewer
- 2D and 3D visualization tool
- Integrate model and observational data
- Visualize and analyze post-processed WRF output
- Has ability to read in a lot of different data (e.g., aircraft data), bring in as an overlay without having to change projections
- Uses a LOT of memory!
- Developed and supported by:
 - Yuan Ho and Julien Chastang (NCAR)
 - support@unidata.ucar.edu

IDV: Example Plots

Questions?