NESTING IN WRF

Kelly Werner July 2017

What is a nest?

- A *finer-resolution* domain used during a model run
- Enables running at a higher-resolution without:
 - Uniformly high-resolution over a large domain VERY expensive
 - High resolution for a very small domain, with mismatched time and spatial lateral boundary conditions

What is a nest?

- Covers a portion of the parent domain, and is fully contained by the parent domain
- Driven along its lateral boundaries by the parent domain

When Should I Use Nests?

When Should I Use Nests?

When Should I Use Nests?

- Need to simulate localized phenomena: convection, topography, landuse-forced, etc.
 - What resolution is necessary to resolve what you are interested in?
 - Input data resolution is too coarse by more than a factor of 5-10x
 - Would like to provide better boundary conditions for the area of interest
 - BC's for external sources are typically 3-6 hours and do not have tendencies for all predicted fields
 - Computing resources not available for uniform coverage

Types of Nesting

- Using a single input domain (met_em.d01*)
 - No met_em.d02* files are used
 - · All fields are interpolated from the coarse grid
 - Only recommended if nest is over the ocean
- Using multiple input domains
 - Each domain contains full input data files
- Specified move
 - Originally used as a testing facility can use, but tedious to set-up
 - Must specify every move
- Automatic move
 - Build WRF with "3=vortex following"
 - Only for tropical cyclone tracking
 - Expensive for single large nest
- ndown.exe
 - If you have run a long coarse domain simulation (years) and later decide you want to have a nest with higher resolution.

Types of Nesting

One-way/two-way nesting

- Determined by the namelist parameter "feedback"
 - feedback = 0 (turned off/one-way)

Types of Nesting

One-way/two-way nesting

- Determined by the namelist parameter "feedback"
 - feedback = 1 (turned on/two-way)

(2) Child values are averaged, and then sent back to parent to overwrite value at corresponding grid point

Nests that are OK

Nests that are NOT OK

Child domains *may not* have overlapping points in the parent domain (1-way nesting excluded).

Nests that are NOT OK

Nests that are NOT OK

WRF Coarse-fine Domain Overlap

- The nested domain can be placed anywhere within the parent domain and the nested grid cells will exactly overlap the parent cells at the coincident cell boundaries
- Coincident parent/nest grid points eliminate the need for complex, generalized remapping calculations, and enhances model performance and portability.

Nesting Set-up and Run

Compiling for Nesting (WRF)

```
Please select from among the following Darwin ARCH options:
 1. (serial) 2. (smpar) 3. (dmpar) 4. (dm+sm)
                                                   PGI (pqf90/pqcc)
             6. (smpar) 7. (dmpar) 8. (dm+sm)
                                                   INTEL (ifort/icc)
 5. (serial)
            10. (smpar) 11. (dmpar) 12. (dm+sm)
 9. (serial)
                                                   INTEL (ifort/clang)
13. (serial)
                          14. (dmpar)
                                                   GNU (q95/qcc)
15. (serial) 16. (smpar) 17. (dmpar) 18. (dm+sm)
                                                   GNU (gfortran/gcc)
19. (serial) 20. (smpar) 21. (dmpar) 22. (dm+sm)
                                                   GNU (gfortran/clang)
                                                   IBM (xlf90 r/cc)
23. (serial)
                          24. (dmpar)
25. (serial) 26. (smpar) 27. (dmpar) 28. (dm+sm)
                                                   PGI (pqf90/pgcc): -f90=pgf90
Enter selection [1-28] : 9
Compile for nesting? (0=no nesting, 1=basic, 2=preset moves, 3=vortex following) [default 0]:
  Compile with nesting option (1=basic)
```

*Note: Unless compiling for a moving nest, there's no reason to not always choose "basic." It takes no longer to build.

namelist.wps - WPS

namelist.wps set-up: &share

To edit the namelist.wps file, make sure you are in the WPS/ directory

&geogrid

parent_id parent_grid_ratio i_parent_start j_parent_start		<mark>1,</mark> 3, 20, 17,
e_we e_sn geog_data_res	= 175, = 145, = 'defaul	
dx dy map_proj = 'la ref_lat = 37 ref_lon = -9 truelat1 = 45 truelat2 = 30 stand_lon = -9 geog_data_path =	7.0, 7.0, 5.0, 9.0, 7.0,	tic/geog/'

parent_id:
The domain # of the nest's parent

 $parent_id = 1, 1, 2, 1$

&geogrid

```
parent_id
               = 1,
                     1,
                         3,
parent_grid_ratio = 1,
i_parent_start = 1,
                         20,
j_parent_start = 1, 17,
e_we = 175, 181,
e_sn = 145, 181,
geog_data_res = 'default', 'default',
dx
               = 15000,
dy
               = 15000,
map_proj = 'lambert',
ref_lat = 37.0,
ref_lon = -97.0,
truelat1 = 45.0,
truelat2 = 30.0,
stand_lon = -97.0,
geog_data_path = '/data/static/geog/'
```

e_we and e_sn:

Each domain's full west-east and south-north dimensions

Notes:

- Domains should be no smaller than about 100x100
- Avoid placing any boundaries over complex terrain

&geogrid

parent_id parent_grid_ratio i_parent_start j_parent_start	= 1,	1, 3, 20, 17,
<mark>e_we</mark> e_sn geog_data_res	= 175, = 145, = 'default	181,
dx dy map_proj = 'la ref_lat = 37 ref_lon = -9 truelat1 = 45 truelat2 = 30 stand_lon = -9 geog_data_path =	7.0, 7.0, 5.0, 0.0, 7.0,	tic/geog/'

Minimum distance between nest boundary and parent boundary:

- 4 grid cells
- need MUCH larger buffer zone

- Good practice to have ~1/3 of coarse-grid surrounding each side of nest
- Nest can be placed a bit downstream of the inflow boundary

&geogrid

parent_id parent_grid_ratio i_parent_start j_parent_start	-	1, 3, 20, 17,
e_we e_sn geog_data_res	= 175, = 145, = 'defaul	181,
dx dy map_proj = 'la ref_lat = 37 ref_lon = -9 truelat1 = 45 truelat2 = 30 stand_lon = -9 geog_data_path =	97.0, 5.0, 9.0, 97.0,	

dx and dy:

Only need the coarse domain resolution. The geogrid program calculates the nest resolution(s) using the "parent_grid_ratio"

*Note:

No changes need to be made to the &ungrib and &metgrid namelists records for nesting purposes

namelist.input (WRFV3)

namelist.input set-up: &time_control

run_days= 0,run_hours= 24,run_minutes= 0,	** To edit the namelist.input file, make sure you are in the <i>WRFV3/test/</i> <i>em_real/</i> (or <i>WRFV3/run/</i>) directory
$run_seconds$ = 0, $start_year$ = 2000, $start_month$ = 01, $start_day$ = 24, $start_hour$ = 12, $start_minute$ = 00, $start_second$ = 00, $start_second$ = 00, end_year = 2000, end_month = 01, end_day = 25, end_hour = 12, end_minute = 00, end_minute = 00, end_minute = 00, end_second = 00, $input_from_file$ = .true, $history_interval$ = 360, $frames_per_outfile$ = 1000, $restart$ = .false $restart_interval$ = 180 $io_form_history$ = 2 $io_form_restart$ = 2	 start/end date/times: These values <i>typically</i> will be the same for all domains history_interval: May choose to have more frequent output time for nests frames_per_outfile: May choose to have all history outputs in a single file, or in multiple files - for particular netcdf conventions (e.g., ncview), it's necessary to have 1 file per time period.

namelist.input set-up: &domains

namelist.input set-up: &domains

namelist.input set-up: &dynamics

Hybrid Vertical Coordinate Option:

Must be consistent between real and WRF (set the same for both)

Nested 3:1 Time Step Ratio

- Example: 3-domain nested run
 - D01: a single 3 min dt
 - D02: a single 1 min dt
 - D03: 20 second pieces, up to 1 min

namelist.input set-up: &physics

- You must use the same physics options for all domains for all schemes
 - Exceptions:
 - cumulus_scheme (cu_physics): may need to be turned off for a nest that has a grid distance of only a few kilometers
 - may turn off PBL scheme for resolutions close to 100 m
- Use same values for physics calling frequency parameters (for each domain)

Computationally inexpensive – no reason to not always set to zero (run every time step); NOTE: cudt=5 => run CU every 5 min

namelist.input set-up: &physics

- You must use the same physics options for all domains for all schemes
 - Exceptions:
 - cumulus_scheme (cu_physics): may need to be turned off for a nest that has a grid distance of only a few kilometers
 - may turn off PBL scheme for resolutions close to 100 m
- Use same values for physics calling frequency parameters (for each domain)

Computationally inexpensive – no reason to not always set to zero (run every time step); NOTE: cudt=5 => run CU every 5 min

Where do I start?

- Always start with a *namelist* template provided in the WRFV3/ test/em_real (or WRFV3/run/) directory
- Use documents/websites to guide your namelist modifications
 - WRFV3/run/README.namelist
 - WRFV3/test/em_real/examples.namelist
 - Users' Guide, Chapter 5
 - http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.8/users_guide_chap5.htm
 - Namelist Best Practice web pages:
 - WPS: <u>http://www2.mmm.ucar.edu/wrf/users/namelist_best_prac_wps.html</u>
 - WRFV3: <u>http://www2.mmm.ucar.edu/wrf/users/namelist_best_prac_wrf.html</u>
- Not all namelist options are domain dependent. If in doubt:
 - Check WRFV3/Registry/Registry.EM_COMMON or registry.io_boilerplate (grep for parameter names)
 - Check WRFV3/run/README.namelist (grep for parameter names)
 - Rule of thumb: If default namelist only has 1 column, don't add values for other columns!

Steps to run with a nest

- WPS: Identical to single domain run:
 - 1) Make sure you are in the WPS/ directory
 - 2) Make necessary changes to the *namelist.wps* file
 - 3) Run geogrid.exe, ungrib.exe, and metgrid.exe
 - ./geogrid.exe
 - ./ungrib.exe
 - ./metgrid.exe
- WRFV3: Identical to single domain run:
 - 1) Make sure you are in the *WRFV3/test/em_real* (or *WRFV3/run/*) *directory*
 - 2) Move or link WPS output files (met_em.d0*) to your running directory ln -sf ../../WPS/met_em* .
 - 3) Edit *namelist.input* file for the appropriate grid and times of the case
 - 4) Run initialization program (assuming a dmpar compile):

```
mpirun -np n ./real.exe
```

- "n": number of processors used
- 1) Run model executable (assuming a dmpar compile):

```
mpirun -np n ./wrf.exe
```

Nesting in real.exe

- Real program can read multiple domain input files from metgrid (met_em_d0*)
- There is no horizontal interpolation taking place between parent and child domains, at this stage (this is handled during the WRF model run)
- There are no consistency check between domains (this is handled in the feedback step for the WRF model)
- real.exe must be re-run if you make changes to:
 - Date/time
 - Domain size, location, quanitity
 - Land surface model option (sf_surface_physics)
 - Input data

Successful real.exe Run

- If *real.exe* was successful, you should see this at the end of your rsl.error.0000 file (assuming a dmpar compile):
 - tail rsl.error.0000
 - SUCCESS COMPLETE REAL_EM INIT
- You should have these files in your running directory:
 - wrfbdy_d01 :
 - time level data at model's start time (includes all domains)
 - wrfinput_d01, wrfinput_d02,
 - time_level data at the lateral boundary for all times
 - 1 file per domain

Successful wrf.exe Run

- If *wrf.exe* was successful, you should see this at the end of your rsl.error.0000 file (assuming a dmpar compile):
 - tail rsl.error.0000
 - SUCCESS COMPLETE WRF
- You should have these files in your running directory:
 - wrfout_d01_2005-08-28_00:00:00
 - wrfout_d02_2005-08-28_00:00:00
 - One for each domain, for each history time (depending on how you set 'frames_per_outfile')
 - wrfrst_d01_2005-08-28_00:00:00
 - wrfrst_d02_2005-08-28_00:00:00
 - If "restart_interval" is less than or equal to the integration time

Questions?