

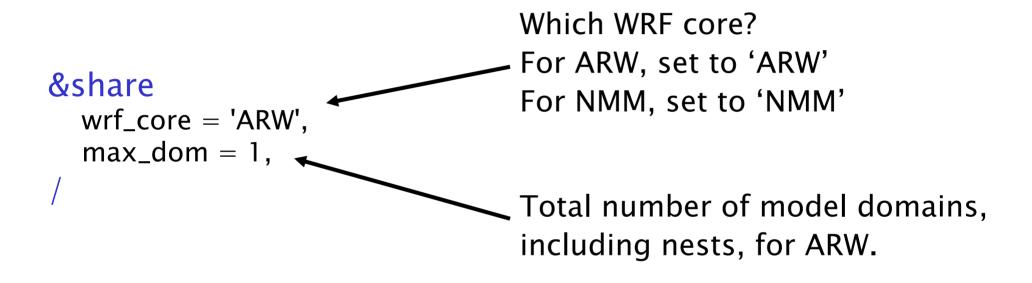
Running the WRF Preprocessing System

Michael Duda

Overview

- How to run through the WPS for a single-domain case
 - Basic steps for running the WPS
 - Geogrid
 - Ungrib
 - Metgrid
- WPS utility programs
- Common WPS mistakes

STEP 1: Edit namelist.wps


For geogrid, only the &share and &geogrid namelists need to be edited in namelist.wps

&share wrf_core = 'ARW', max_dom = 1, /

```
&geogrid
    map_proj = 'lambert',
    truelat1 = 45.0,
    truelat2 = 30.0,
    stand_lon = -105.25,
    ref_lat = 40.0,
    ref_lon = -105.25,
    e_we = 220,
    e_sn = 175,
    dx = 15000,
    dy = 15000,
    geog_data_res = 'default',
    geog_data_path = '/data/static/geog/'
/
```


STEP 1: Edit namelist.wps

See p. 3-8 and 3-37

STEP 1: Edit namelist.wps

&geogrid

```
. . .
```

```
map_proj = 'lambert',
truelat1 = 45.0,
truelat2 = 30.0,
stand_lon = -105.25,
```

Map projection: What projection to use? What are the parameters of the projection?

See p. 3-9 and 3-40

STEP 1: Edit namelist.wps

&geogrid

... ref_lat

ref_lon

$$= 40.0,$$

= -105.25,

Domain location: Where on Earth is the center of the domain?

e_we = : e_sn = : dx = : dy = :

= 220, = 175, = 15000, = 15000, Domain size: How many grid points does the domain have? What is the grid spacing?

geog_data_res = 'default', geog_data_path = '/data/static/geog/'

- - -

See p. 3-9, 3-19, and 3-38

Static data: What resolution of source data to interpolate from for each domain? Where to find data on the filesystem? (See "Extra slides"...)

STEP 2: Run geogrid.exe

Parsed 11 entries in GEOGRID.TBL

Processing domain 1 of 1

Processing XLAT and XLONG

Processing MAPFAC

Processing F and E

Processing ROTANG

Processing LANDUSEF

Calculating landmask from LANDUSEF

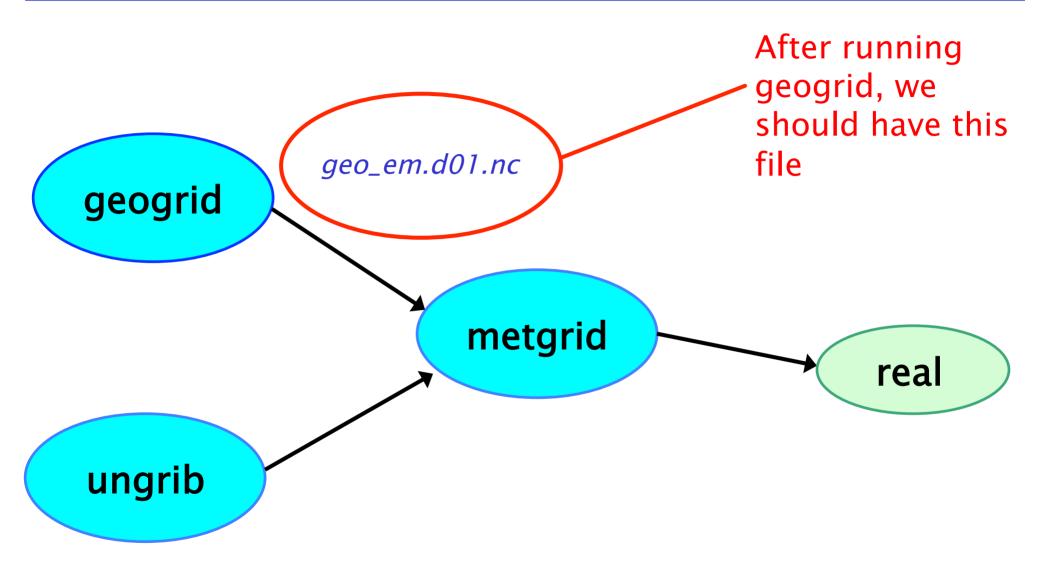
Processing HGT_M

Successful completion of geogrid.

Geogrid processes each domain individually. There will be one section of messages for each domain.

Calculating landmask from LANDUSEF
Processing HGT_M

will be written to the screen and to the screen and to the screen.



STEP 3: Check that geogrid ran successfully

If geogrid ran sucessfully, this message should be printed:

If there was an error, check for an ERROR or WARNING message in the geogrid.log file, or for a system error, like "Segmentation fault".

STEP 1: Edit namelist.wps

For ungrib, only the &share and &ungrib namelists need to be edited

```
&share
  wrf_core = 'ARW',
  max_dom = 1,
  start_date = '2006-04-01_00:00:00',
  end_date = '2006-04-01_12:00:00',
  interval_seconds = 21600
/
```


STEP 1: Edit namelist.wps

&share

```
wrf_core = 'ARW',
max_dom = 1,
```

```
start_date = '2006-04-01\_00:00:00', end_date = '2006-04-01\_12:00:00',
```

 $interval_seconds = 21600$

Data time range: Between which times should ungrib process GRIB data?

Data frequency: How many seconds between output files for ungrib? E.g., 10800 s = 3 hrs

See p. 3-14, and 3-38

STEP 1: Edit namelist.wps

```
&ungrib
  prefix = 'GFS',
/
```

Intermediate file names: Gives prefix for intermediate files.

Prefix can include a path.

E.g., 'XYZ' would give intermediate files named XYZ: yyyy-mm-dd_hh.

See p. 3-14, 3-23, and 3-41

STEP 2: Link the correct Vtable to the file name "Vtable" in the run directory

- Some Vtables are provided with WPS in the wps/ ungrib/Variable_Tables directory
 - E.g., Vtable.GFS, Vtable.SST, Vtable.ECMWF

See p. 3-15

- Ungrib always expects to find a file named
 Vtable in the run directory
 - > In -s ungrib/Variable_Tables/Vtable.GFS Vtable
 - > Is Vtable

Vtable -> ungrib/Variable_Tables/Vtable.GFS

STEP 3: Link GRIB files to the correct file names in the run directory

- Ungrib always expects GRIB files to be named GRIBFILE.AAA, GRIBFILE.AAB, GRIBFILE.AAC, etc., in the run directory
- The link_grib.csh script can be used to link GRIB files to these file names:
 - > link_grib.csh /data/GRIB/GFS/gfs*

See p. 3-15

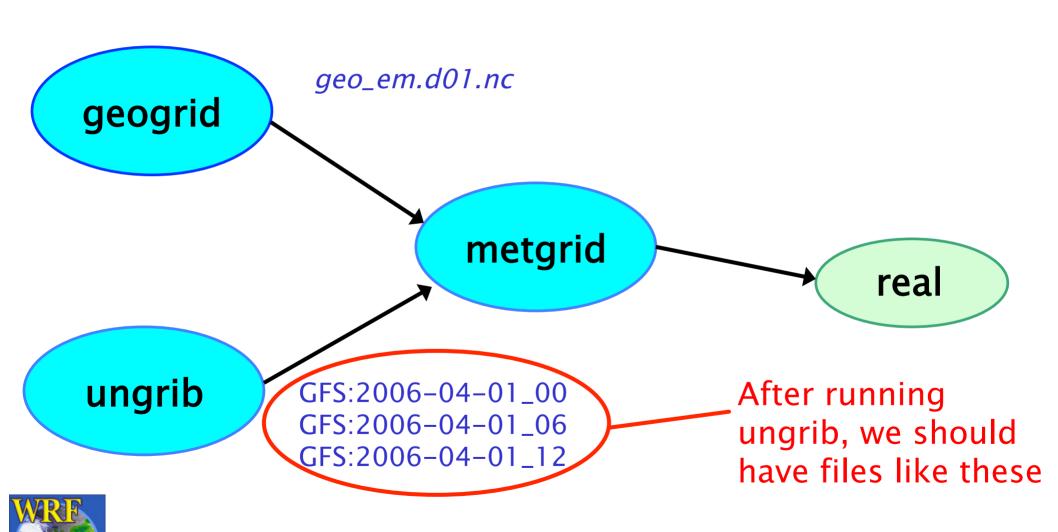
> Is GRIBFILE.*

GRIBFILE.AAA -> /data/GRIB/GFS/gfs_060401_00_00

STEP 4: Run ungrib.exe

Inventory for date = 2006-08-16 12:00:00

PRES	TT	UU	VV	RH	HGT		
2013.0	0	0	0	0	0	0	
2001.0	X	X	X	X	0	X	
1000.0	X	X	X	X	X		
975.0	X	X	X	X	X		
950.0	X	X	X	X	X		
925.0	X	X	X	X	X		
900.0	X	X	X	X	X		


STEP 5: Check that ungrib ran successfully

If ungrib ran successfully, this message should be printed:

If there was an error, check for error message in ungrib's printout or in the ungrid.log file.

Common errors are related to incorrect date specifications in the &share namelist, or because GRIB2 data was used with a version of WPS compiled without GRIB2 libraries.

STEP 1: Edit namelist.wps

For metgrid, only the &share and &metgrid namelists need to be edited

STEP 1: Edit namelist.wps

&share

```
wrf_core = 'ARW',
max_dom = 1,
```

```
start_date = '2006-04-01\_00:00:00', end_date = '2006-04-01\_12:00:00',
```

 $interval_seconds = 21600$

Data time range

Data time range: Time range to process.

Interval between intermediate files created by ungrib

See p. 3-17 and 3-37

STEP 1: Edit namelist.wps

Intermediate file prefixes: Prefix (or prefixes) of intermediate files to interpolate to model domain. Should match prefix given to ungrib.

&metgrid

fg_name = 'GFS',

See p. 3-17 and 3-24

constants_name = 'SST:2006-04-01_00',

Constant fields: Optional name of an intermediate file with fields to be used for every time period.

See p. 3-17, and 3-41

STEP 2: Run metgrid.exe

```
Processing domain 1 of 1
SST:2006-04-01_00
```

Processing 2006-04-01_00 GFS

Processing 2006-04-01_06 GFS

Processing 2006-04-01_12 GFS

Fields from constant files
(given using constants_name)
are processed before any time
varying fields.

Metgrid processes all time period for one domain before processing for the next domain

STEP 3: Check that metgrid ran successfully

If metgrid ran successfully, this message should be printed:

If there was an error, check for an ERROR or WARNING message in the metgrid.log file, or for a system error, like "Segmentation fault".

After running metgrid,

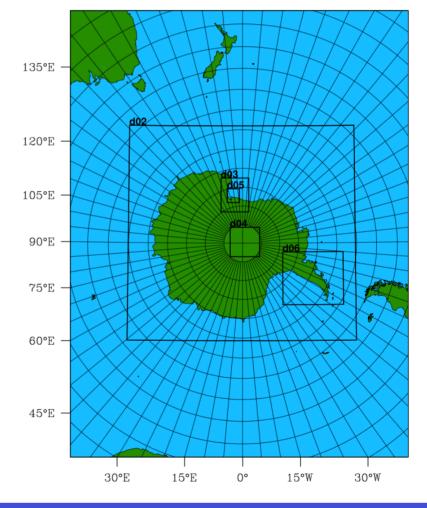
we should have files similar to these geo_em.d01.nc met_em.d01.2006-04-01_00.nc geogrid met_em.d01.2006-04-01_06.nc met_em.d01.2006-04-01_12.nc metgrid real ungrib GFS:2006-04-01_00 GFS:2006-04-01_06 GFS:2006-04-01_12

Overview

- How to run through the WPS for basic cases
 - Basic steps for running WPS
 - Geogrid
 - Ungrib
 - Metgrid
- WPS utility programs
- Common WPS mistakes

WPS Utility Programs

- Besides geogrid, ungrib, and metgrid, some simple utility programs are distributed with WPS:
 - For checking contents of intermediate format files
 - For listing contents of GRIB1 & GRIB2 files
 - To assist in locating domains
 - For computing 3d pressure field for ECMWF data
- Some programs use NCAR Graphics libraries for plotting
 - For these utilities, NCAR Graphics must be installed



See p. 3-27

Utility: plotgrids.ncl

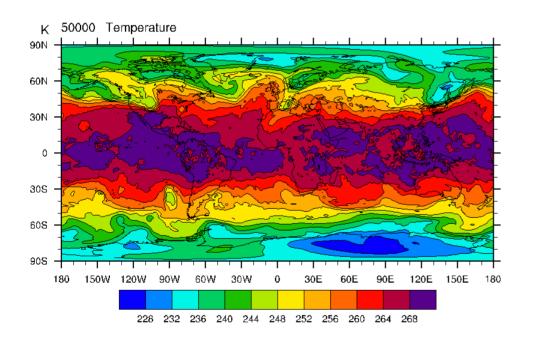
The *plotgrids.ncl* script plots the locations of grids defined in *namelist.wps*

- plotgrids can be used to iteratively refine the locations of grids.
- plotgrids.ncl uses the namelist.wps file only, so there is no need to run geogrid first!

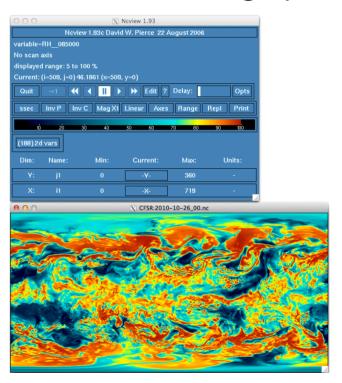
Utility: rd_intermediate

The rd_intermediate lists information about the fields found in an intermediate-format file

```
TT = GIJIT
UNITS = K DESCRIPTION = Temperature
DATE = 2000-01-24 12:00:00 FCST = 0.000000
SOURCE = unknown model from NCEP GRID 212
LEVEL = 200100.000000
I,J DIMS = 185, 129
IPROJ = 1
  REF X, REF Y = 1.000000, 1.000000
  REF LAT, REF LON = 12.190000, -133.459000
  DX, DY = 40.635250, 40.635250
  TRUELAT1 = 25.000002
DATA(1,1)=295.910950
```



Utility: int2nc + plotfmt_nc.ncl


The int2nc program converts an ungrib intermediate file to a standard NetCDF file

Users may then visualize fields with ncview, NCL, or other graphical

packages:

Visualize NetCDF intermediate fields using plotfmt_nc.ncl script

Visualize NetCDF intermediate fields using neview

Utility: g1print and g2print

The *g1print* and *g2print* programs list the contents of a GRIB1 or GRIB2 file:

	Prod Disc	Cat	Param num	Lvl code	Lvl one	Lvl two	Name	Time	Fcst hour
1	0	3	5	100	100000	0	HGT	2006-08-16 12:00:00	00
2	0	3	5	100	97500	0	HGT	2006-08-16_12:00:00	00
3	0	3	5	100	95000	0	HGT	2006-08-16_12:00:00	00
4	0	3	5	100	92500	0	HGT	2006-08-16 12:00:00	00
5	0	3	5	100	90000	0	HGT	2006-08-16_12:00:00	00
6	0	3	5	100	85000	0	HGT	2006-08-16 12:00:00	00
7	0	3	5	100	80000	0	HGT	2006-08-16_12:00:00	00
8	0	3	5	100	75000	0	HGT	2006-08-16_12:00:00	00
9	0	3	5	100	70000	0	HGT	2006-08-16_12:00:00	00
10	0	3	5	100	65000	0	HGT	2006-08-16_12:00:00	00

Utility: calc_ecmwf_p

The calc_ecmwf_p utility creates intermediate files with a pressure (and possibly GHT and RH) field

FILE:2009-08-27 00

PSFC / LOGSFP SOILHGT / SOILGEO TT SPECHUMD

emcwf_coeffs

0	0.000000	0.000000	0.0000	
1	2.000040	0.000000	0.0200	0.0100
2	3.980832	0.000000	0.0398	0.0299
3	7.387186	0.000000	0.0739	0.0568
4	12.908319	0.000000	0.1291	0.1015
5	21.413612	0.000000	0.2141	0.1716
6	33.952858	0.000000	0.3395	0.2768
7	51.746601	0.000000	0.5175	0.4285
8	76.167656	0.000000	0.7617	0.6396
9	108.715561	0.000000	1.0872	0.9244

calc_ecmwf_p.exe

PRES:2009-08-27_00

PRESSURE RH GHT

See p. 3-28

Overview

- How to run through the WPS for basic cases
 - Basic steps for running WPS
 - Geogrid
 - Ungrib
 - Metgrid
- WPS utility programs
- Common WPS mistakes

Common WPS Mistakes

1) All 3-d fields must have same number of levels in metgrid

```
WRF_DEBUG: Warning DIM 4 , NAME

num_metgrid_levels REDIFINED by var GHT 27

26 in wrf_io.F90 line 2347

ERROR: Error in ext_pkg_write_field
```

- This is usually corrected by ensuring that all 3-d meteorological fields have surface level data
- Try setting debug_level=1000 in &share namelist, and checking metgrid.log for a table showing which fields are available at each level

Common WPS Mistakes

- 2) When using a regional data set (e.g., NAM), ensure that model domain is completely covered by the data
 - The metgrid program will stop if the model domain has grid points that are not covered by data
- 3) For native vertical coordinate data sets (e.g., RUCb, ECMWF), ensure that both pressure and geopotential height fields are available

Questions?

Extra slides

Choosing Static Datasets

WPS v3.8.1 supports several land cover datasets and two different topography datasets

Land use:

- USGS 24-class, 30-arc-second resolution
- USGS 24-class + inland water, 30-arc-second resolution
- MODIS 20-class, 30- and 15-arc-second resolution
- MODIS 20-class + inland water, 30-arc-second resolution
- NLCD 2011 40-class, 9-arc-second resolution

Terrain:

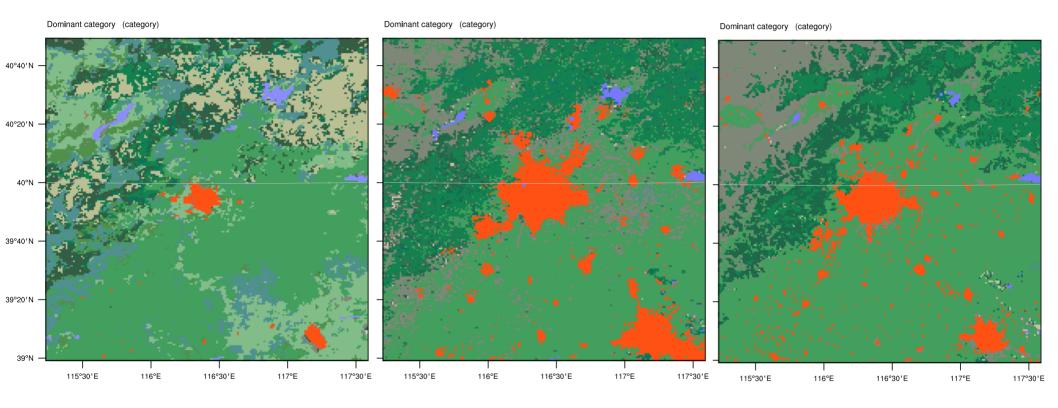
- GTOPO30
- GMTED2010

Choosing Static Datasets

Selection of alternate static datasets is performed using the geog_data_res namelist option in the &geogrid record

Prefix the usual geog_data_res selection with the name for the land use or topography dataset to be used.

E.g.,


```
geog_data_res = 'nlcd2011_9s+default'
```

to use NLCD 2011 9-arc-second land cover, and default resolution for other static fields.

Global Land Cover Datasets

Consider an example 1-km domain centered over Beijing:

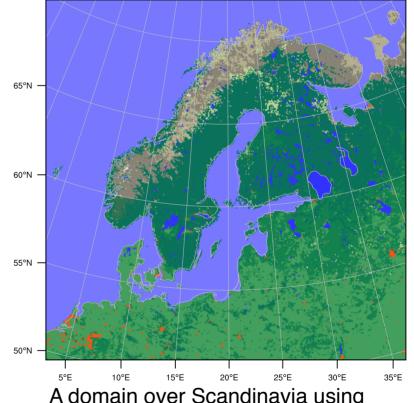
USGS 30-arc-second resolution, from ~1993 data; the USGS data are used by default

MODIS 30-arc-second resolution, from 2001(?) data; select using 'modis 30s'

MODIS 15-arc-second resolution, most prevalent category between 2001 and 2010; select using 'modis_15s'

Identifying Inland Water Bodies

Two land cover datasets also provide a special category to identify "inland water bodies", which can sometimes require special treatment, e.g., when initializing SST field or running the lake model in WRF.


MODIS 30-arc-second:

Selected using 'modis_lakes'

USGS 30-arc-second:

Selected using 'usgs lakes'

We'll discuss the use of lake categories for initializing the SST field in the "WPS Advanced Features" talk on Thursday.

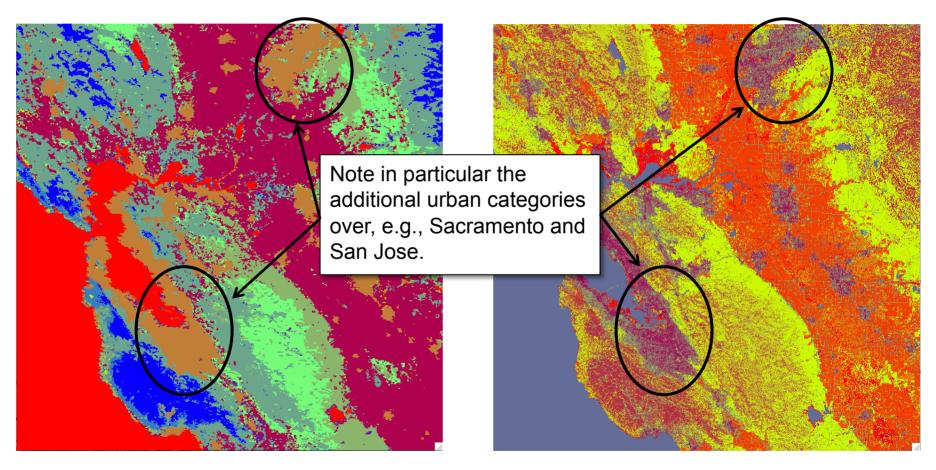
A domain over Scandinavia using MODIS 21-class land cover; lake category shown in dark blue.

NLCD Land Use (Continental U.S. Only)

For the WRF domains over the Continental U.S., one can use high-resolution land cover from the National Land Cover Database (NLCD).

NLCD 2011 9-arc-second:

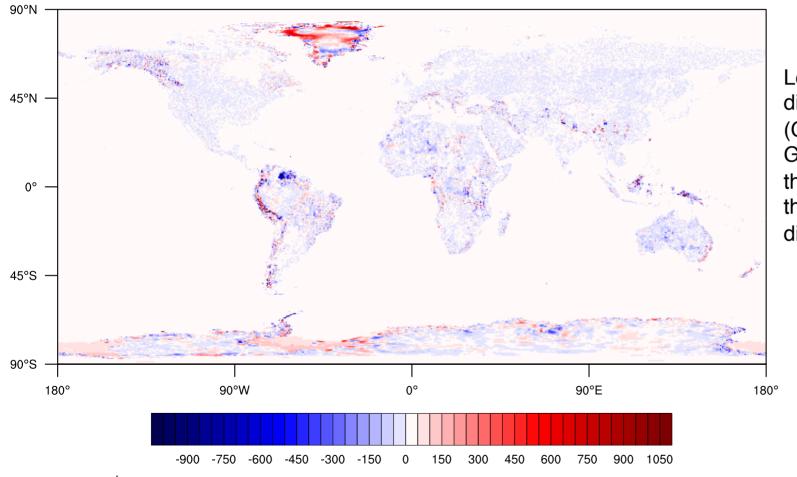
Selected using 'nlcd2011_9s'


Besides high spatial resolution, the NLCD data provides four new urban categories:

- Developed Open Space
- 2. Developed Low Intensity
- 3. Developed Medium Intensity
- 4. Developed High Intensity

NLCD Land Use (Continental U.S. Only)

For the WRF domains over the Continental U.S., one can use high-resolution land cover from the National Land Cover Database (NLCD).



Above: (left) A 250-m WRF domain covering San Francisco Bay using MODIS 15-arc-second land cover data; (right) the same domain using NLCD 2011 9-arc-second data.


GMTED2010 Terrain

WPS v3.8 and newer replace the GTOPO30 dataset with a newer, more accurate terrain dataset from the USGS: GMTED2010*.

Left: Terrain elevation difference in meters (GMTED2010 minus GTOPO30). Note that the scale does not cover the full range of the differences.

