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Best Practices of WRF

* WREF is well-tested and documented. It can be used by people
who have no experiences or formal training.

® However, in spite of advanced parameterization schemes in WRF
and high-resolutions permitted by faster computers, correct choice
of options is still a prerequisite for successful application of WRF




Best Practices of WRF

® A Thorough Analysis of the Research Topic

® (Conclusions and approaches in previous studies? Questions
not answered? Incomplete knowledge? Important processes
(convection, radiation, surface forcing, etc.? )

® extensive literature review

® Your Scientific or Practical Objectives?
® Scientific questions you want to answer

® \What can you do with WRF? Where and how WRF simulations
may be helpful

® Learn from others what model configurations work well.




Best Practices of WRF

® The Model Configuration

Domain — often have profound influences
Resolution (horizontal and vertical)

Time and method of initialization

® Cold start?

® Data assimilation?

® Spinup time?

Lateral Boundary Locations
Physics/dynamics options



How to determine the model domain

® How large do they need to be?

® Should not be too small, otherwise solution will be determined
by forcing data

® No less than 100x100 (at least 10 grid points are in the
boundary zone)

® Where to place my lateral boundaries?
® Avoid steep topography
® Away from the area of interest




Importance of domain

12-hour simulations of 250-hPa winds (m s-1) from the 40-
km grid increment Eta Model initialized at 1200 UTC 3
August 1992, based on experiments that used a large (a) and

a small (b) computational domain. (Warner, 2011)




Initialization and Spin-up Issues

®* Model problems often arise from poor initial condition
® Appropriate initial time
® Quality of initial condition
® Check land data:
e.g. landuse: does it represent my area well?
e Know about the data: how good are the data?
® Forecast data
® Reanalysis data
e Climate model data

® In the first few hours, expect noise in pressure fields

® Mostly sound waves adjusting winds to terrain. No harmful lasting
effects




Impervious fraction (%)

Skintemp simulated with
and without Impervious
(Aug 26, 2006, 102)

Pleim et al., 2012



Initialization and Spin-Up

Convective Spin-Up: An example of NCAR’s 3-km convective runs
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Lateral Boundary Condition

® Abasic and potentially serious limitation to regional model
simulation, including WRF

® Possible negative effects of LBC

® How to minimize the negative LBC impact on forecast quality:
guidelines and cautions

® Strong forcing should be avoided at lateral boundaries
® Resolution-consistent input data should be used

® More frequent is better
o

Interactive boundaries should be employed when possible




non-periodic LBCs

Gaudet et al.




Grid Size and Impact

o Extreme weather event forecast
® The Derecho of 29-30 June 2012

* A= 3 km: Traditional cloud-permitting resolution
® No need for deep-convective parameterization

e A= 30 m: Traditional large-eddy simulation (LES) resolution
® No need for a planetary boundary layer (PBL) parameterization

e Turbulent eddies (i.e., thermals, rolls, etc.) are handled by the
model’s governing equations [plus surface-layer and subgrid
turbulence schemes]

® 100m<A<1km
e A PBL scheme will still be needed for most cases
e Shallow cumulus probably can be turned off (not for A> 500 m )

® Advection Scheme: better use a monotonic/non-osciallaory option
(adv_opt=2)

(Bryan, 2014)




Case Study: The Derecho of 29-30 June 2012
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Model Levels and High Tops

At least 30 or more levels for a model top at 50 mb

° For high tops < 50 hPa

° Stligtosphere option for base state: Iso_temp=200 K. This prevents base state from becoming unrealistically
cold.

® Since V3.6.1, a positive lapse rate is allowed in stratosphere

° For tops near 1 hPa (45-50km), 60 or more levels are required.

° Ozone climatology becomes important above 30 hPa, where some or all of the ozone layer are included
®* Use RRTMG since CAM monthly ozone is available in RRTMG

Vertical grid distance should not be larger than 1000 m
(Radiation, microphysics, less accurate lateral BC)

If finer horizontal grid size is used, more levels will be
needed in the vertical

Make sure dz < dx




Complex Terrain

® Steep terrain ( > 45 degrees) may cause numerical stability
problems.

Increasing epssm ( 0.1->0.5 or even larger)

® This is a sound wave damper that can stabilize the model
caused by steep slope at the model start time
For large slopes, set diff opt=2

e diff_opt=1 is less realistic than diff opt=2, and diff _opt=2
used to be less stable but becomes more stable in recent
versions

For V3.6 and later version, diff opt=2 and km_opt=4 can be
used together




Diffusion




Selecting Model Physics

® Many options = more works
® http://www2.mmm.ucar.edu/wrf/users/phys references.html
® http://www2.mmm.ucar.edu/wrf/users/docs/wrf-phy.html

® Testing of multiple options for a particular application

® A given set of physics will perform differently depending on
domain size, location, initialization and phenomenon of interest

® (Certain combinations better tested than others, but still no
guarantee for better performance in every case.




Physics in multi-scale model

® Grid size and cumulus
® DX>10km, yes
® DX <4Kkm, probably not

® Grey Zone: 5-10km, no consensus, may try to use scale-aware
cumulus scheme, such as GF, MSKF.

® Grid size and microphysics
® For DX > 10 km, no complex scheme is necessary
® For DX <4 km ( convection-resolving), need at least graupel




Physics in Multi-scale Model

® Grid Size and PBL
® PBL assumes all eddies are unresolved
e DX > 500 m, PBL should be activated
® | ES assumes eddies are well resolved
® DX <100 m, LES should be applied
® For DX 100-500 m, either may work to some extent

® Terra incognita: resolved CISCs, violation of PBL assumption,
and unresolved interaction between CISC and smaller scale

turbulence.
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Simulation of Hurricane Sandy: why such a large

difference?

« ECMWF(pink)

« GFS(green)

« TWRF(red,
Tiedtke )

« SWRF(blue,
SAS)

(Grid interval from left to right:
30, 60, 90-km;

Top two: initialized at 0000 and
1200 UTC 23 Oct;

Bottom two: initialize at 0000
and 1200 UTC 24 Oct.)



Test of Sandy Simulation

® For this case, cumulus parameterization is the dominant driver of
forecast track accuracy

® Poor track forecasts by the GFS/GEFS are not due to
‘inappropriate’ initial conditions, nor are they consequences of the
differences in model resolution

® These types of examples serve to emphasize the importance of
parameterization development as a necessary condition for
forecast improvement
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Other Options That May Be Considered

Example:

Upper level damping over topography
Gravity-wave drag if resolution is coarse
Digital Filter Initialization

Horizontal Diffusion

Spectral Nudging




Domain average 3-hourly dry-hydrostatic column
pressure tendency
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4 km central US grid, 0000 UTC, 5/7/07
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Spectral Nudging

It is useful for controlling longer wave phases. Compensates for
errors due to low-frequency narrow lateral boundaries

The “spectral nudging” method imposes time-variable large-scale
atmospheric states on a regional atmospheric model

Spectral nudging may be seen as a suboptimal and indirect data
assimilation technique.

® \Wave number is selected so that domain size/wavenumber =~1000km in X
and Y direction

® Nudge U, V, potential temp, geopotential (not QV, since it has no wave
pattern)

® (Can nudge in all levels or use ramp above a specified model level
(if zfac ph, k_zfac ph, etc.)

However, strong nudging may reduce or filter out extreme events
since nudging pushes the model toward a relatively smooth, large-
scale state.
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Horizontal 10 m wind speed fields (m s—1) for typhoon Songda

(200418), on 1 September 2004, 0:00.
From left: CFSR reanalysis, CCLM-NN, CCLM-SN.

(Frauke Feserl and Monika Barcikowska, Environmental Research Letters, 2012)




Bottomline..

® Model results can be affected by many choices:
® Domain configuration, both horizontal and vertical;
® |nput data;
® |nitial and lateral boundary conditions.

® Model has limitations:
® Physics: biases, may not represent certain process well, etc.
® [imitation of the lateral boundaries

* Always check the output after each program




Other Best Practice Reading:

® “12 steps toward improving the outcome” by C. Davis:
http://www2.mmm.ucar.edu/wrf/users/workshops/WS
2012/ppts/discussion1.pdf

* “WRF Advanced usage and Best Practices” by
Dudhia and Wang:
http://www2.mmm.ucar.edu/wrf/users/workshops/WS
2014/ppts/best _prac wrf.pdf
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