WRF Data, Utilities & Post-processing

Kelly Werner January 2018

Input Data

Input Data: Mandatory Fields

· 3D Data (data on pressure levels, for example)

Temperature
U and V components of wind
Geopotential Height
Relative Humidity/Specific Humidity

2D Data

Surface pressure
Mean sea-level pressure
Skin temperature/SST
2 meter temperature and relative humidity
10 meter U and V components of wind
Soil data (temperature and moisture) and soil height

Recommended Fields

LANDSEA mask field for input data Water equivalent snow depth SEAICE Additional SST data

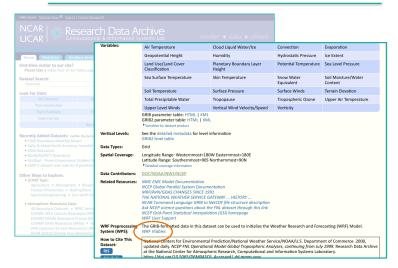
External Data Sources: Global

Name	Resolution	Coverage	Temporal Availability	Website
NCEP/NCAR Reanalysis (R1/NNRP)	209 km 6-hourly	Global	Jan 1948 – present	http://rda.ucar.edu/da tasets/ds090.0
NCEP/DOE Reanalysis (R2)	209 km 6-hourly	Global	Jan 1979 – present	http://rda.ucar.edu/da tasets/ds091.0
ERA Interim Data	1.125° - 0.703° 6-hourly	Global	Jan 1979 – present	http://rda.ucar.edu/da tasets/ds627.0
ECMWF's Operational Model Analysis	Varying		Jan 2011 – present	http://rda.ucar.edu/da tasets/ds113.0
NCEP GDAS/FNL Reanalysis	0.25° 6-hourly	Global	July 2015 – present	http://rda.ucar.edu/da tasets/ds083.3
GFS Real-time	1°	Global		ftp://ftpprd.ncep.noa a.gov/pub/data/nccf/c om/gfs
NCEP GFS/FNL Reanalysis	1° 6-hourly	Global	Aug 1999 – present	http://rda.ucar.edu/da tasets/ds083.2
GFS Gridded Model Data	0.5° 24-hourly	Global	Dec 2002 – present	http://rda.ucar.edu/da tasets/ds335.0
NCEP GFS 0.25°	0.25° 3-hourly & 12-hourly	Global	Jan 2015 – present	http://rda.ucar.edu/da tasets/ds084.1

External Data Sources: North America

Name	Resolution	Coverage	Temporal Availability	Website
NAM Real-time	32/12 km 6-hourly	North America		ftp://ftpprd.ncep.no aa.gov/pub/data/ncc f/com/nam
NAM Analysis	12 km 6-hourly	North America	Jan 2012 – present	http://rda.ucar.edu/ datasets/ds609.0
GCIP NCEP Eta	40 km 3-hourly & 6-hourly	North America	April 1995 – present	http://rda.ucar.edu/ datasets/ds609.2
NCEP NARR	32 km 3-hourly	North America	Nov 1979 – present	http://rda.ucar.edu/ datasets/ds608.0

External Data Sources: Climate


Name	Resolution	Coverage	Temporal Availability	Website
NCEP Climate Forecast System Reanalysis (CFSR)	0.3° to 2.5° 6-hourly	Global	Jan 1979 – Dec 2010	http://rda.ucar.edu/ datasets/ds093.0
NCEP Climate Forecast System Reanalysis II (CFSv2)	0.2° to 2.5° 6-hourly	Global	Jan 2011 – present	http://rda.ucar.edu/ datasets/ds094.0
NCAR CESM CMIP5 data (netCDF format)	6-hourly	Global	Jan 1950 – 2100	http://rda.ucar.edu/ datasets/ds316.0
NCAR CESM CMIP5 data (IM – Bias Corrected)	6-hourly	Global	Jan 1951 – 2100	http://rda.ucar.edu/ datasets/ds316.1
		SST DATA		
NCEP SST Analysis	1° - 1/12°	Global		http://polar.ncep.no aa.gov/sst
NOMAD3 SST	1° - 0.25°	Global	Jan 1854 – present (depending which product)	http://nomads.ncdc. noaa.gov/data.php
NCEP & NCDC Reconstructed SST	1° - 2°	Global	Jan 1854 – Dec 2015	http://rda.ucar.edu/ datasets/ds277.0

External Data Sources: RDA

http://rda.ucar.edu

External Data Sources: RDA

https://rda.ucar.edu/datasets/ds083.2/

External Data Sources: RDA

http://www2.mmm.ucar.edu/wrf/users/download/free_data.html

NCA	Available GRIB Datasets from NCAR							
UCA	Dataset	Spatial Resolution	Temporal Resolution	Temporal Availability	Vtable			
Home Irst-time Please t	NCEP Final Analysis (GFS-FNL) ds083.0	2.5 degree	12-hourly	1997-04-01 to 2007- 06-30			Evaporation	
Keywords Ook For (NCEP Final Analysis (GFS-FNL) ds083.2	1 degree	6-hourly	1999-07-30 to current			sure Ice Extent rature Sea Level Pres Soil Moisture/	
	NCEP GDAS Final Analysis ds083.3	0.25 degree	6-hourly	2015-07-08 to current	Vtable,GFS	ds : Ozi	Content Terrain Elevati one Upper Air Tem	on
tecently a • ERAS • Daily 0 • FRAS	NCEP GFS ds084.1	0.25 degree	3-hourly (for first 240 hrs) 12-hourly (hrs 240-384)	2015-01-15 to current				
NCAR GridRi CMIP	NCEP/NCAR Reanalysis (NNRP) ds090.0	209 km	6-hourly	1948-01-01 to current	Vtable.NNRP			
ther Wa • GCMC Agri Hun Spe	NCEP Climate Forecast System Reanalysis (CFSR) ds093.0	0.3, 0.5, 1.0, 1.9, & 2.5 degree	6-hourly	1979-01-01 to 2011- 01-01	Vtable.CFSR_press_pgbh06			
Atmos All F ECM	NCEP Climate Forecast System Version 2 (CFSv2) ds094.0	0.2, 0.5, 1.0, and 2.5 degree	6-hourly	2011-01-01 to current	Vtable.CFSR_sfc_flxf06			
ECW JMA NCA	ECMWF Operational Model Analysis ds113.0	varying		2011-01-01 to current	Vtable.ECMWF		nd Forecasting (WRF) N	
	NCEP North American Mesoscale (NAM)	12 km	6-hourly	2012-01-01 to current	Vtable NAM	g fr	partment of Commero om July 1999. Research ms Laboratory.	

Utilities

- Grib and Intermediate Data
- · Designing a model domain
- netCDF tools
- · Other Utilities
- ImageMagick
- Special WRF Output Variables
- OBSGRID
- MET

External Data Sources: NOMADS

http://nomads.ncdc.noaa.gov

NAM GFS RUC CFS NARR R1/R2 SST

GRIB Data Handling

Documents

- https://rda.ucar.edu/index.html#gribdoc (GRIB1 data)
- https://rda.ucar.edu/index.html#grib2doc (GRIB2 data)

Decoders

- wgrib, wgrib2, unpackgrib2.c, grib2to1.c

http://rda.ucar.edu/#!GRIB

http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html

g1print.exe and g2print.exe

- Show data available in GRIB1 and GRIB2 files
- Available from util/ directory in WPS

grib2ctl.pl

- Create .ctl and .idx files, so that you can plot GRIB files with GrADS
- http://www.cpc.ncep.noaa.gov/products/wesley/grib2ctl.html

ncl_convert2nc

 Converts from grib format to netcdf format http://www.ncl.ucar.edu/Document/Tools/ncl_convert2nc.shtml

Writing Intermediate File Format

- http://www2.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap3.htm# Writing Meteorological Data
- wrf_wps_write_int

```
FIELD = "SST"
UNITS = "K"
DESC = "Sea Surface Temperature"
```

opt = True

opt@map_source = "ERA-I Data" opt@projection = 0 opt@startloc = "SWCORNER"

 opt@startlon
 = 0.0

 opt@startlat
 = -90.0

 opt@deltalon
 = 1.25

 opt@deltalat
 = 0.942408

 opt@is_wind_earth_relative
 = False

opt@date = "2015-07-26_00:00:00"

opt@level = 200100.

wrf_wps_wrtie_int(IM_name,FIELD,UNITS,DESC,VAR(:,:),opt)

Reading Intermediate Format Files

wrf_wps_read_int

! opens file

istatus = wrf wps open int(filename)

! reads header

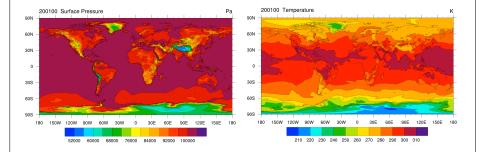
units,map_source,desc)

! reads slab

Slab = wrf_wps_rddata_int(istatus,nx,ny)

! Loop until reaching the end of the file

· rd intermediate

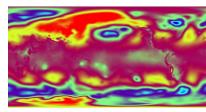

TRUELAT 1 = 25.00002

DATA (1,1) = 295.910950

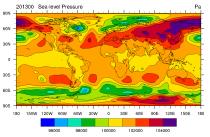
Utility: plotfmt

• The plotfmt program plots the fields in the ungribbed intermediate files

ncl plotfmt.ncl 'filename="FNL:2007-09-15_00"'



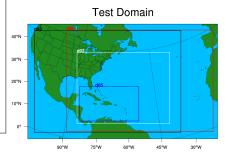
Plotting Intermediate Files in netCDF Format


- · Use the utility int2nc.exe
 - Converts intermediate files created by ungrib.exe to netcdf format
 - ./int2nc.exe FILE:yyyy-mm-dd hh
- To plot: plotfmt nc.ncl

ncl plotfmt nc.ncl 'inputFILE="FNL:2007-09-15 00.nc"'

Plot Using noview

Plot Using plotfmt_nc.ncl



Model Domain Design

```
mpres@mpFillColors =
 (/"background", "DeepSkyBlue",
 "ForestGreen", "DeepSkyBlue",
 "transparent"/)
mpres@mpGridSpacingF = 45
lnres@domLineColors
"white", "Red" , "Red" , "Blue" /)
mpres@mpOutlineBoundarySets
 "NoBoundaries" ; "Geophysical"
                 ; "USStates"
 "National"
 "GeophysicalAndUSStates"
"AllBoundaries"
pares = True
pmres@gsMarkerColor = "White"
pmres@gsMarkerIndex = 16
pmres@gsMarkerSizeF = 0.01
gsn polymarker (wks,mp,-
77.26,38.56,
                pmres)
```

• plotgrids.ncl

- WPS/util/plotgrids.ncl
- Reads namelist information to generate plot
- X11, png, pdf

netCDF Tools

Model Domain Design

```
DOMS = 1
                                         Suggested namelist options
DX = 36.
                                         parent id = 0,
MAP = "mercator"
                                         parent grid ratio = 1,
LAT1 = (/ -35.0, -45., -27. /)
                                         i parent start = 1,
LAT2 = (/ 0., -20., -23. /)
                                         j parent start = 1,
LON1 = (/131., 121., 125./)
                                         e we = 123,
LON2 = (/ 171., 159., 131./)
                                         e sn = 107,
parent id = (/ 0, 1, 2 /)
                                         dx = 36000.
parent grid ratio = (/1, 3, 3/)
                                         dy = 36000,
                                         map proj = 'mercator',
                                         ref lat = -17.50,
                                         ref lon = 151.00,
                                         truelat1 = -17.00,
                                         truelat2 =
                                                     0.00,
  design grids.ncl
                                         stand lon = 151.00,
                                  18
```

NCO Tools

http://nco.sourceforge.net

- netCDF Operators are command-line programs that take netCDF (HDF and/or DAP) files as input, then operate (e.g., derive new data, compute stats, print, manipulate metadata) and output to the screen or files in various formats (text, binary, netCDF, etc.)
- ncdiff
 - Shows the differences between 2 files
 ncdiff input1.nc input2.nc diff.nc
- ncrcat (nc cat)
 - Writes specified variables/times to a new file, or concatenates files
 ncrcat -d file1.nc file2.nc combined.nc
 ncrcat -d Time,0,231 -v RAINNC wrfout* RAINNC.nc
- ncra (nc average)
 - Averages variables in files and writes to a new file
 ncra -v T2 file1.nc file2.nc -o T2.nc
 ncra -v T2 wrfout* -o T2.nc

NCO Tools (continued)

http://nco.sourceforge.net

- ncrename
 - Renames variables, dimensions, attributes ncrename -v LANDUSE, LAND -a missing_value,_FillValue file.nc
- ncks (nc kitchen sink)
 - Combination of several NCO tools to allow cutting/pasting subsets of data into a new file
 - Extracting a specific variable

ncks -v RAINNC wrfout_d01_2015-06-01_00:00:00 RAINNC.nc

Splitting files

ncks -d Time, 1, 1 wrfout -o wrfout1.nc

NCO Tools: Other Available Operators

• ncap2: arithmetic processor

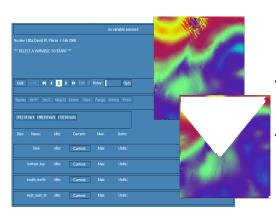
• ncatted: ATTribute editor

 ncbo: binary operator (includes ncadd, ncsubtract, ncmultiply, ncdivide)

• ncea: ensemble averager

• ncecat: ensemble conCATenator

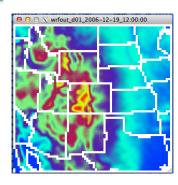
• **ncflint:** FiLe INTerpolator


• ncpdq: permute dimensions quickly, pack data

quietly

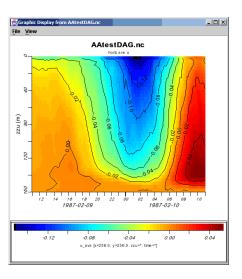
• ncwa: weighted averager

ncview


http://meteora.ucsd.edu/~pierce/ncview_home_page.html

- A graphical interface that allow quick viewing of netCDF files
 - All variables found in file
 - Detect where things go wrong
- Other options
 - Time series
 - Vertical Cross Section
- WRF/WPS files
 - Any netCDF format file
 - geo_em.d0*, met_em.d0*, wrfinput_d0*, wrfout.d0*, wrfrst.d0*

ncview



- Beginning V3.7
- Works with wrfinput* and wrfout* files
- Must have 1 time period per file

ncBrowse

http://www.epic.noaa.gov/java/ncBrowse/

ncdump

- Reads a netCDF dataset and prints information from that dataset
- ncdump -h file
 - Prints header (inclusive list of variables in the file)
- ncdump -v VAR file
 - Prints specific data for the variable 'VAR'
- ncdump -v Times file
 - Prints the times that are included in the file

ncdump –v Times

```
netcdf wrfout_d01_2000-01-24_12:00:00 {
dimensions:
    Time = UNLIMITED ; // (3 currently)
            DateStrLen = 19
west east = 73 ;
            south north = 60
            west east stag = 74 ;
            bottom_top = 27 ;
south north stag = 61
            bottom_top_stag = 28 ;
variables:
            char Times(Time, DateStrLen) ;
           cnar Times(Time, DateStrlen);
float LU_INDEX(Time, south north, west_east);
    LU_INDEX:FieldType = 104;
    LU_INDEX:MemoryOrder = "XY";
LU_INDEX:description = "LAND USE CATEGORY";
                        LU_INDEX:units = "" ;
LU_INDEX:stagger = "" ;
                         :TITLE = " OUTPUT FROM WRF V3.4.1 MODEL";
                         :START DATE = "2000-01-24 12:00:00" ;
                         :WEST-EAST GRID DIMENSION = 74 ;
:SOUTH-NORTH GRID DIMENSION = 61
                         :BOTTOM-TOP_GRID_DIMENSION = 28;
:DX = 30000.f;
:DY = 30000.f;
data:
   "2000-01-24 12:00:00"
   "2000-01-24_18:00:00"
"2000-01-25_00:00:00"
```

Other Utilities

- Additional utilities
 - read_wrf_nc: reads WRF netCDF file, outputs various data
 - iowrf: extracts a box from WRF netCDF files, thin or destagger data
 - wrf_interp: interpolates WRF output files to pressure, height-agl, height-msl, potential temp, and equivalent potential temp, and can perform underground extrapolation
 - p interp: converts wrfout data to pressure levels
 - v interp: adds vertical levels in WRF input and boundary files
 - diffwrf: performs several functions, including making comparisons of two WRF files
 - For more details on the above utilities, see:
 http://www2.mmm.ucar.edu/wrf/users/utilities/util.htm
- To download utilities:

http://www2.mmm.ucar.edu/wrf/users/download/get_sources.html

ImageMagick

http://www.imagemagick.org

· Converts graphical files from one format to another

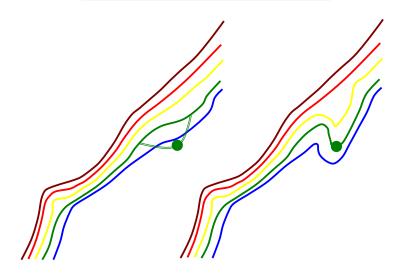
convert file.pdf file.png
convert file.png file.bmp

- Many options available
 - Rotate frames, trim white space, etc.
 - 2 ways to use
 - 1) display plot.png
 - 2) Convert -trim +repage -background white -flatten plot.pdf plot.png
- · Can make movies
 - Can create individual frames for each image
- Maintains high resolution great for publishing!
- Cannot deal with .ncgm files

OBSGRID

Special WRF Output Variables

 The WRF model outputs the state variables defined in the Registry file, and these state variables are used in the model's prognostic equations.
 Some of these variables are perturbation fields and therefore, the following definitions for reconstructing meteorological variables are necessary:


Total geopotential	PH + PHB
Total geopotential height in m	(PH + PHB) / 9.81
Total potential temp in K	T+300
Total pressure in mb	(P + PB) * 0.01
Wind components, grid relative	U, V
Surface pressure in Pa	Psfc
Surface winds, grid relative	U10, V10 (valid at mass points)
Surface temp and mixing ratio	T2, Q2

See WRFV3/Registry/Registry.EM_COMMON for description of variables

OBSGRID

- To improve a first-guess gridded analysis by incorporating additional observational information
 - Traditionally first-guess analysis came from low-resolution global analysis and forecast grids
 - These days, higher-resolution, regional scale analyses are more readily available
- When is this method useful?
 - When using very coarse resolution first-guess input data
 - If you conducted a field campaign and have acquired very high-resolution station data (for example)

OBSGRID: Basic Concept

OBSGRID: How to Run

Get the source code

http://www2.mmm.ucar.edu/wrf/users/downloads.html

- Compile
- Prepare observation files
- Edit the namelist.oa
- Link in met_em* files from WPS
- · Run the program
 - ./obsgrid.exe
- · Check your output

See the WRF Users' Guide for detailed information

http://www2.mmm.ucar.edu/wrf/users/docs/user guide V3.8/users guide chap7.htm

OBSGRID: How to Use to Run WRF

 Link the 'metoa_em*' files to WRF running directory

In -sf ../../OBSGRID/metoa_em.d01.* .

 Add the following to the &time_control section of the namelist

auxinput1_inname = "metoa_em.d<domain>.<date>"

- Run real.exe
- Run wrf.exe

OBSGRID - Grid Nudging - Surface

- If you are interested in doing surface analysis nudging
- OBSGRID creates a file called wrfsfdda_d0*
- How to use this:
 - In &fdda, set grid_fdda = 1 and grid_sfdda = 1
 - Run real.exe and get a file called wrffdda_d01, and use with wrfsfdda_d01, wrfinput_d01, and wrfbdy_d01
 - Run wrf.exe
- For more information, refer to Jimy Dudhia's ARW Nudging talk

OBSGRID – Observation Nudging

- · Allows for input observation data & quality control
- Used if you have a large number of extra observations, and a single case study (not recommended for climate studies)
- Can get obs data from CISL (little R format)
- How to use this
 - OBSGRID creates files called OBSDOMAIN_XXX (can concatenate files into 1: OBSDOMAIN 101)
 - In &fdda, add obs_nudge_opt = 1
 - In &time control, add auxinput11 interval s = 180, auxinput11 end h = 24
 - Will need OBSDOMAIN 101, wrfinput d01 and wrfbdy d01 files
 - Run real.exe and wrf.exe as usual
- For more information, see http://www2.mmm.ucar.edu/wrf/users/wrfv3.1/How_to_run_obs_fd da.html and Jimy Dudhia's ARW Nudging talk

MET Verification Software

- Model Evaluation Tools (MET)
- Provides all the basics (e.g., RMSE, bias, skill scores)
- Provides
 - Advanced spatial methods (wavelets, objects)
 - Confidence intervals
- Download it http://www.dtcenter.org/met/users/downloads/
- Support met_help@ucar.edu
- Documentation http://www.dtcenter.org/met/users/docs/overview.php

Post-processing

- Supported Packages
- ARWpost
- RIP4

Supported Post-processing Packages

http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html

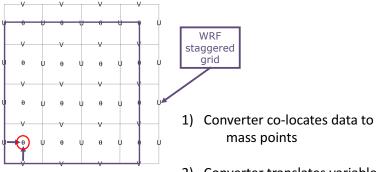
Package	Users' Guide Page #	Information
NCL	9-2	Graphical package Supported by NCAR/CISL (wrfhelp@ucar.edu and ncl-talk@ucar.edu)
ARWpost	9-29	Converter (GrADS) (wrfhelp@ucar.edu)
RIP4	9-20	Converter and interface to graphical Package, NCAR graphics (wrfhelp@ucar.edu)
UPP	9-36	Converter (GrADS & GEMPAK) (upp-help@ucar.edu)
VAPOR	9-38	Converter and graphical package Supported by VAPOR (vapor@ucar.edu)
IDV	None – see unidata.ucar.edu	GRIB (from UPP) GEMPAK (from wrf2gem) Vis5d CF compliant data (from wrf_to_cf) Supported by unidata (support@unidata.ucar.edu)
GEMPAK	None - see: unidata.ucar.edu/soft ware/gempak	Data from wrf2gem or UPP Supported by unidata (support@unidata.ucar.edu)

Choosing the Right Tool

- Can it read your data?
- Will you need to pre-process the data first?
- Is it purely a visualization tool, or does it include post-processing?
- Can it handle big datasets?
- Which diagnostic/statistical functions does it have?
- How easy is it to add diagnostics?
- 3D or 2D visualization?

- Can it handle staggered grids?
- How is data below the ground handled?
- Vertical grids?
- How are model time stamps handled?
- · Easy to use?
- · Cost of package?
- How well supported is it?

Data Handling


	NCL	RIP4	GrADS	UPP	VAPOR	IDV
netCDF		ripdp	ARWpost	converter	converter	converter
GRIB						
ASCII						
shapefiles						
geogrid & metgrid output						
intermediate file format	V6.2.0 V6.3.0					
wrfinput data						
Idealized data						
wrfoutput						
big data						·

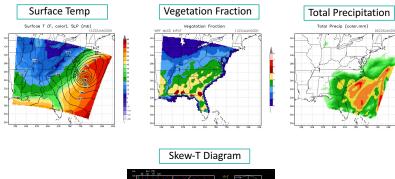
Post-processing

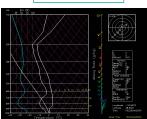
	NCL	RIP4	GrADS	UPP	VAPOR	IDV
Post-processing						
Data output						
3D						
diagnostics	some	a lot	some	some	limited	limited
Add diagnostics	Very easy	easy	easy	Relatively easy	Not as easy	Not as easy
Vertical output Coordinate	Model pressure height	Model pressure height	Model pressure height	pressure	model	model
Extrapolate Below ground						

Model Staggering

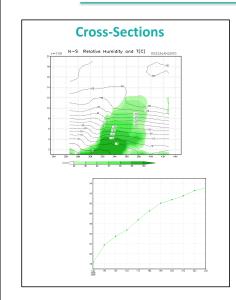
Why is a converter necessary if a package can display netCDF files?

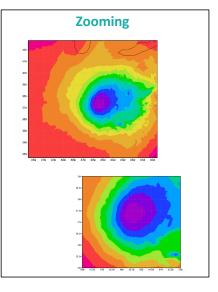
2) Converter translates variables - e.g., "T" is not really temp. Must add 300 for actual temp (K)


ARWpost


ARWpost: General Information

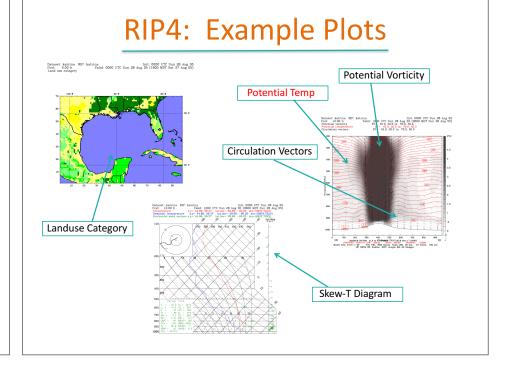
- Converter
 - Reads in wrf-arw model data, creates GrADS output files
 - Requires GrADS to display
- GrADS software is only needed to display data, not needed to compile the code
 - http://www.iges.org/grads/grads.html
- Generate a number of graphical plots
 - Horizonal
 - Cross-section
 - skewT
 - Meteogram
 - Panel


- Download Code
 - http://www2.mmm.ucar.edu/wrf/users /download/get sources.html
- · Online Tutorial
 - http://www2.mmm.ucar.edu/wrf/users /graphics/ARWpost/ARWpost.htm

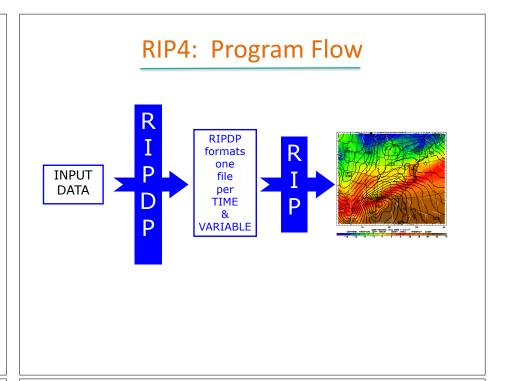

ARWpost: Example Plots

ARWpost: Example Functions

ARWpost: Diagnostics


- cape 3d cape
- cin 3d cin
- · mcape maximum cape
- · mcin minimum cin
- clfr low/middle/high cloud fraction
- dbz 3d reflectivity
- max_dbz maximum reflectivity
- geopt geopotential
- height model height in km
- Icl lifting condensation level
- Ifc level of free convection
- pressure full model pressure in hPa
- rh relative humididy
- rh2 2 m relative humidity

- theta potential temperature
- tc temperature in degrees C
- tk temperature in degrees K
- td dew point temperature in degrees C
- td2 2m dew point temperature in degrees C
- slp sea level pressure
- umet & vmet winds rotated to Earth coordinates
- u10m & v10m 10 m winds rotated to Earth coordinates
- wdir wind direction
- wspd wind speed coordinates
- wd10 10 m wind direction
- ws10 10 m wind speed


ARWpost: Scripts

Script Name	Description
cbar.gs	Plots a color bar on shaded plots
rgbset.gs	Allows you to add/change colors from color # 20 – 99
skew.gs	Program to plot a skewT
plot_all.gs	Automatically finds all .ctl files in the directory and lists them so the user can pick when to use, will plot all fields chosen
rain.gs (real data only)	Plots total rainfall (must have data that contain fields RAINC and RAINNC)
cross_z.gs (real data only)	Plots a NS and EW cross section of RH and T (C)

RIP4

RIP4: Example Plots Placed Agriculture 19 to 19

RIP4: Namelist (&userin)

- Use namelist to control
 - processing times, intervals, title information, text quality on a plot
 - whether to do time series, trajectory, or to write output for Vis5D
 - Full explanation for namelist variables is available in the user document
- ptimes, ptimeunits times to process
- tacc tolerance for processing data
- iusedaylightrule 1 applied, 0 not applied
- idotser generate time series output
- icgmsplit split metacode into several files
- itrajcalc 0, 1 ONLY when doing trajectory calculations
- rip root override RIP ROOT
- ncarg root output type: X11, cgm, pdf, ps

RIP4: Common Error Message

GKS ERROR NUMBER 2 ISSUED FROM SUBROUTINE GCLKS: --GKS NOT IN PROPER STATE: GKS SHALL BE IN STATE GKOPFORTRAN STOP

- Usually NOT a graphics error.
- More often this is an error with the times you are asking RIP to process
 - Check the ptimes in your .in file
 - Check the xtimes files created by RIPDP

RIP4: General Information

- Requires NCAR Graphics Libraries
 - http://www.ncl.ucar.edu
- Source Code
 - http://www2.mmm.ucar.edu/wrf/users/download/get_source.h tml
- Documentation
 - Included in program's tar file (in Doc/ directory)
 - http://www2.mmm.ucar.edu/wrf/users/docs/ripug.htm
- Online Tutorial
 - http://www2.mmm.ucar.edu/wrf/users/graphics/RIP4/RIP4.htm

Questions?