
REAL

Ming Chen &
Dave Gill

gill@ucar.edu

real.exe

wrf.exe

wrf d01
input

wrf d01
bdy

wrf d02
input

Description of
General Functions

WPS d1
output

WPS d2
output

Real program in a nutshell

• Function
• Standard input variables
• Base State
• Standard generated output
• Vertical interpolation
• Soil level interpolation

Real program in a nutshell

• Function
• Standard input variables
• Base State
• Standard generated output
• Vertical interpolation
• Soil level interpolation

Loads of definitions …

Real program in a nutshell

• Function
• Standard input variables
• Base State
• Standard generated output
• Vertical interpolation
• Soil level interpolation

What are the required,
optional variables?

From whence do they come?

What are the restrictions on
metgrid vertical coordinates?

Real program in a nutshell

• Function
• Standard input variables
• Base State
• Standard generated output
• Vertical interpolation
• Soil level interpolation

What defines the base state?

Real program in a nutshell

• Function
• Standard input variables
• Base State
• Standard generated output
• Vertical interpolation
• Soil level interpolation

What are the mandatory files
for success?

Real program in a nutshell

• Function
• Standard input variables
• Base State
• Standard generated output
• Vertical interpolation
• Soil level interpolation

How does the user change
the vertical coordinate?

Are there recommendations?

Real program in a nutshell

• Function
• Standard input variables
• Base State
• Standard generated output
• Vertical interpolation
• Soil level interpolation

Why is the surface layer
scheme special compared to
the other physics options?

Real program in a nutshell

• Function
• Standard input variables
• Base State
• Standard generated output
• Vertical interpolation
• Soil level interpolation

What is required in real to
do nesting in WRF?

What is optional in real to do
nesting in WRF?

Function

• The WRF model pre-processor is real.exe
• The real.exe program is available serial or DM parallel

(primarily for aggregate memory purposes, as opposed to
timing performance)

• This program is automatically generated when the model is
built and the requested use is for a real data case

• The real.exe program takes data from WPS and transform
the data for WRF

• Similar to the ARW idealized data pre-processor, real.exe
is tightly coupled to the WRF model through the Registry

Function

• 3D forecast or simulation
• Meteorological input data that primarily originated from a

previous forecast or analysis, probably via the WPS
package

• Anticipated utilization of physics packages for
microphysics, surface conditions, radiation, convection,
and boundary layer (maybe usage of nudging capabilities)

Function

• A non-Cartesian projected domain
– Lambert conformal, Mercator, polar stereographic,

rotated latitude/longitude (global or regional)
• Selection of realistic static fields of topography, land use,

vegetation, and soil category data
• Requirement of time dependent lateral boundary

conditions for a regional forecast

Function

• Generation of diagnostics necessary for assumed WRF
model input

• Input field adjustment for consistency of static and time
dependent fields (land mask with soil temperature, etc.)

• ARW: computation of reference and perturbation fields
• Generation of initial state for each of the requested

domains
• Creation of a lateral boundary file for the most coarse

domain
• Vertical interpolation for 3d meteorological fields and for

sub-surface soil data

Function

• Run-time options
– specified in the Fortran namelist file (namelist.input for

real and WRF)

• Compile-time options
– Changes inside of the source code
– Compiler flags
– CPP ifdefs
– Modifications to the Registry file

Standard Input Variables

• The metgrid program typically provides meteorological
data to the real program.

• Coordinate:
– The real program is able to input and correctly process

any strictly monotonic vertical coordinate
• Isobaric: OK
• Sigma: OK
• Hybrid: OK

Standard Input Variables

• The metgrid program typically provides meteorological
data to the real program.

• Mandatory:
– 3d and surface: horizontal winds, temperature, relative humidity,

geopotential height
– 3d soil: soil temperature
– 2d fields: surface pressure, sea-level pressure, land mask

• Optional (but desirable):
– 3d soil: soil moisture
– 2d fields: topography elevation of input data, SST, sea-ice, skin

temperature

Base State

• Several of the mass-point fields are separated into a time-
independent base state (also called a reference state) and a
perturbation from the base state

• The base state fields are only functions of the topography
and a few user-selectable constants

• If the topography changes, such as with a moving nest, the
base state fields are modified

• Feedback for 2-way nesting also impacts base state fields
through topographic averaging – inside of the WRF model

• No base state computations are required prior to the real
program

Hybrid Vertical Coordinate

• Since WRF v3.9 the capability to have a hybrid vertical
coordinate is available: a terrain following coordinate near
the surface and relaxing to isobaric surfaces aloft

• It is default option in WRFV4.0
(A compile-time option for WRFV3.9 is required configure –hyb)

• A run-time option is required (default in WRFV4.0):
&dynamics
hybrid_opt = 2
/

Terrain Following Coordinate

Standard Generated Output

• For regional forecasts, the real program generates both an
both an initial (wrfinput_d01) and a lateral boundary
(wrfbdy_d01)

• The boundary file is not required for global forecasts with
ARW (look at MPAS for global simulations)

• The initial condition file contains a single time period of
data

• These files contain data used directly by the WRF model
• The initial condition file may be ingested by the WRFDA

code (referred to as a cold-start)
• If n times were processed with WPS and real, the lateral

boundary file contains n-1 time slices

Lateral Boundary Condition Times

Time periods
from WPS

Time slices from
WPS

Boundary
tendency steps

0 6 12 18 24 30 36 h

1 2 3 4 5 6 7

�
1 2 3 4 5 6

Lateral Boundary Condition Times

Time periods
from WPS

Time slices from
WPS

Boundary
tendency steps

0 6 12 18 24 30 36 h

1 2 3 4 5 6 7

�
1 2 3 4 5 6

n-1 n

Tasks of the Initialization Program
Input Data for real.exe Vertical Interpolation

• Select reasonable h levels, or let the real program do it for
you

• Verify that the �thicknesses� are acceptable, generally
about the same value in the free-atmosphere and less than
1000 m

• It is SAFEST to NOT initially choose h values
– Initially, select the number of eta levels
– Plot profiles of the resultant heights
– Adjust the h levels accordingly

• A few namelist options, the terrain elevation, and eta levels
completely define the model coordinate for the WRF code

Vertical Interpolation

• The h surfaces are computed with a few NML parameters:

&domains
e_vert = 50, 50, 50
p_top_requested = 1000,

&dynamics
base_temp = 290.
iso_temp = 200

Vertical Interpolation

Vertical cross sections of THICKNESS of each model layer,
with 50 vertical levels above the PBL, ptop = 10 hPa.

Uniform layers Exaggerated Stretching
720-820 m

2000 m
1000 m
800 m

575 m

Physical Parameterization Settings

• The real program and the WRF model are tightly coupled
• Most physical parameterization settings in the

namlist.input are IGNORED by real
• EXCEPT

– sf_surface_physics
– Land surface model (processes soil temperature and soil

moisture)
– Different schemes in WRF use differing numbers of

layers
– The layers are defined in real from the metgrid output

Soil Level Interpolation

• The WRF model supports several Land Surface schemes:
– sf_surface_physics = 1, Slab scheme
– 5 layers
– Defined with thicknesses: 1, 2, 4, 8, 16 cm

Layers Mid point
000 – 010 cm -- 005 cm
010 – 040 cm -- 025 cm
040 – 100 cm -- 070 cm

100 – 200 cm – 150 cm

Levels
000 cm
005 cm
020 cm
040 cm
160 cm
300 cm

Noah RUC

Real program in a nutshell

• Function
• Standard input variables
• Base State
• Standard generated output
• Vertical interpolation
• Soil level interpolation

Real program in a nutshell

• Function
• Standard input variables
• Base State
• Standard generated output
• Vertical interpolation
• Soil level interpolation

What are the required,
optional variables?

From where do they come?

What are the restrictions on
metgrid vertical coordinates?

Real program in a nutshell

• Function
• Standard input variables
• Base State
• Standard generated output
• Vertical interpolation
• Soil level interpolation

What defines the base state?

Real program in a nutshell

• Function
• Standard input variables
• Base State
• Standard generated output
• Vertical interpolation
• Soil level interpolation

What are the mandatory files
for success?

Real program in a nutshell

• Function
• Standard input variables
• Base State
• Standard generated output
• Vertical interpolation
• Soil level interpolation

How does the user change
the vertical coordinate?

Are there recommendations?

Real program in a nutshell

• Function
• Standard input variables
• Base State
• Standard generated output
• Vertical interpolation
• Soil level interpolation

Why is the surface layer
scheme special compared to
the other physics options?

Real program in a nutshell: PART 3

• Access to everything
• Eta levels
• Metgrid flags
• Adding a variable for vertical interpolation
• Vertical interpolation
• Tracers
• Trajectories
• Options

Access to Everything

• The primary location to modify the real program is the
dyn_em/module_initialize_real.F file

• Contains:
– Registry information
– All of the namelist settings selected
– Variables from the metgrid program
– Variables to be sent to the WRF model

• Called for every time period, for every domain

Access to Everything

• The value of every variable input into the WRF model
is controlled through module_initialize_real.F

• All variables are accessed through the derived data type
“grid”

DO j=jts,MIN(jde-1,jte)
DO i=its,MIN(ide-1,ite)

grid%sst(i,j) = grid%sst(i,j) + 1
END DO

END DO

Access to Everything

• The dynamics variables have two time levels, indicated
by the _1 and _2 suffixes. Only the _2 variables are sent to
WRF.

• Some variables sent to WRF are diagnostic only

DO j = jts, min(jde-1,jte)
DO i = its, min(ide,ite)

grid%u10(i,j)=grid%u_gc(i,1,j)
END DO

END DO

Eta Levels

• The vertical coordinate, eta, used in the WRF model is
defined inside of the real program.

• The user may allow the real program to choose the levels
(select only the number of levels in the namelist.input file)

&domains
e_vert = 30, 30, 30,
/

&domains
e_vert = 30, 40, 50,
/

Eta Levels

• Often the user needs to specify the eta levels
(coordinate this with your model top)

• Use the automatic generation to your advantage

• Specify how many levels ABOVE the PBL that you
require. Add 8 to this value. For example, you require 50
vertical levels above the PBL.

&domains
e_vert = 58, 58, 58,
/

Eta Levels

• Run the real program (single or small domain, one time
level), make sure the level thicknesses are OK (< 1000 m)

Converged znw(kte) should be about 0.0 = -5.2081142E-04
Full level index = 1 Height = 0.0 m
Full level index = 2 Height = 56.6 m Thickness = 56.6 m
Full level index = 3 Height = 137.9 m Thickness = 81.4 m
Full level index = 4 Height = 244.7 m Thickness = 106.8 m
Full level index = 5 Height = 377.6 m Thickness = 132.9 m
Full level index = 6 Height = 546.3 m Thickness = 168.7 m
Full level index = 7 Height = 761.1 m Thickness = 214.8 m
Full level index = 8 Height = 1016.2 m Thickness = 255.0 m
Full level index = 9 Height = 1207.1 m Thickness = 190.9 m
Full level index = 10 Height = 1401.8 m Thickness = 194.6 m
Full level index = 11 Height = 1600.3 m Thickness = 198.5 m
Full level index = 12 Height = 1802.8 m Thickness = 202.5 m
Full level index = 13 Height = 2196.1 m Thickness = 393.3 m

Eta Levels

• Get the computed levels from ncdump, after running the real
program

> ncdump -v ZNW wrfinput_d01
data:

ZNW =
1, 0.993, 0.983, 0.97, 0.954, 0.934, 0.909, 0.88, 0.8587637, 0.8375274,

0.8162911, 0.7950548, 0.7550299, 0.7165666, 0.6796144, 0.6441237,
0.6100466, 0.5773363, 0.5459476, 0.5158363, 0.4869595, 0.4592754,
0.4327437, 0.407325, 0.382981, 0.3596745, 0.3373697, 0.3160312,
0.2956253, 0.2761188, 0.2574798, 0.2396769, 0.2226802, 0.2064602,
0.1909885, 0.1762376, 0.1621807, 0.1487919, 0.1360459, 0.1239184,
0.1124378, 0.1017038, 0.09166772, 0.08228429, 0.07351105, 0.06530831,
0.05763897, 0.05046835, 0.04376402, 0.03749565, 0.0316349, 0.02615526,
0.02103195, 0.01624179, 0.01176313, 0.007575703, 0.003660574, 0 ;

Eta Levels

• Re-run the real program (all domains, all time periods) with
the new levels in the nml variable eta_levels

• Replace the PBL values with those of your choosing.

• Augment the number of vertical levels (e_vert)

• Note that both e_vert and eta_levels are full levels

Eta Levels

&domains
eta_levels =

1, 0.993, 0.983, 0.97, 0.954, 0.934, 0.909, 0.88,
0.8587637, 0.8375274,
0.8162911, 0.7950548, 0.7550299, 0.7165666, 0.6796144, 0.6441237,
0.6100466, 0.5773363, 0.5459476, 0.5158363, 0.4869595, 0.4592754,
0.4327437, 0.407325, 0.382981, 0.3596745, 0.3373697, 0.3160312,
0.2956253, 0.2761188, 0.2574798, 0.2396769, 0.2226802, 0.2064602,
0.1909885, 0.1762376, 0.1621807, 0.1487919, 0.1360459, 0.1239184,
0.1124378, 0.1017038, 0.09166772, 0.08228429, 0.07351105, 0.06530831,
0.05763897, 0.05046835, 0.04376402, 0.03749565, 0.0316349, 0.02615526,
0.02103195, 0.01624179, 0.01176313, 0.007575703, 0.003660574, 0

/

• Maybe replace with
1, 0.999, 0.998, 0.996, 0.993, 0.990, 0.980. 0.970, 0.960, 0.950,

0.940, 0.930, 0.920, 0.910, 0.900, 0.890, 0.880, 0.870,

Eta Levels

• For vertical nesting refinement, follow the similar
procedure for each domain.

• Each domain will need a specification of eta levels

• The assignment of the single eta_levels array is split into
pieces for easier understanding

Eta Levels

&domains
max_dom = 2,

e_vert = 35, 45,
eta_levels(1:35) = 1., 0.993, 0.983, 0.97, 0.954, 0.934,

0.909, 0.88, 0.840, 0.801, 0.761, 0.722,
0.652, 0.587, 0.527, 0.472, 0.421, 0.374,
0.331, 0.291, 0.255, 0.222, 0.191, 0.163,
0.138, 0.115, 0.095, 0.077, 0.061, 0.047,
0.035, 0.024, 0.015, 0.007, 0.

eta_levels(36:81) = 1.0000, 0.9946, 0.9875, 0.9789, 0.9685,
0.9562, 0.9413, 0.9238, 0.9037, 0.8813,
0.8514, 0.8210, 0.7906, 0.7602, 0.7298,
0.6812, 0.6290, 0.5796, 0.5333, 0.4901,
0.4493, 0.4109, 0.3746, 0.3412, 0.3098,
0.2802, 0.2524, 0.2267, 0.2028, 0.1803,
0.1593, 0.1398, 0.1219, 0.1054, 0.0904,
0.0766, 0.0645, 0.0534, 0.0433, 0.0341,
0.0259, 0.0185, 0.0118, 0.0056, 0.

vert_refine_method = 0, 2,

The metgrid Flags

• The real program and the WRF model are able to
communicate directly through the Registry file

• The real program is only able to talk with the metgrid
program through the input data stream

• Specific information about the incoming data is contained
in special flags that the user may set in the metgrid table
file – usually, related to THIS VARIABLE EXISTS

==
name=PMSL

interp_option=sixteen_pt+four_pt+average_4pt
flag_in_output=FLAG_SLP

==

The metgrid Flags

> ncdump -h met_em.d01.2000-01-24_12:00:00.nc | grep FLAG
:FLAG_METGRID = 1 ;
:FLAG_EXCLUDED_MIDDLE = 0 ;
:FLAG_SOIL_LAYERS = 1 ;
:FLAG_SNOW = 1 ;
:FLAG_PSFC = 1 ;
:FLAG_SM000010 = 1 ;
:FLAG_SM010040 = 1 ;
:FLAG_SM040100 = 1 ;
:FLAG_SM100200 = 1 ;
:FLAG_ST000010 = 1 ;
:FLAG_ST010040 = 1 ;
:FLAG_ST040100 = 1 ;
:FLAG_ST100200 = 1 ;
:FLAG_SLP = 1 ;
:FLAG_TAVGSFC = 1 ;
:FLAG_QNWFA = 1 ;
:FLAG_QNIFA = 1 ;
:FLAG_SOILHGT = 1 ;
:FLAG_MF_XY = 1 ;

The metgrid Flags

• The real program uses this information when deciding
how to do many operations:
– Is the input from metgrid?
– Method to compute surface pressure
– Use RH vs mixing ratio vs specific humidity

computations
– Excluded middle processing
– Average surface air temperature for lake temperatures
– Water/Ice friendly vertical interpolation
– Which levels of soil data are present

• All flags for the metgrid to real data transfer are contained
in share/module_optional_input.F

The metgrid Flags

flag_slp = 0

flag_name(1:8) = 'SLP ’
CALL wrf_get_dom_ti_integer (fid, 'FLAG_' // &

flag_name, itmp, 1, icnt, ierr)
IF (ierr .EQ. 0) THEN

flag_slp = itmp
END IF

Adding a Variable for Vertical Interpolation

• This process is manual

• Every new input 3d variable that needs to be
interpolated needs to have an explicit block of code
added

• Mass-point variables (such as would be used in all
physics schemes) are straight forward, as they may be
largely copied using the existing templates already in place

• Most vertical interpolation options are supplied from the
namelist.input file

• All interpolation is handled in dry pressure

Adding a Variable for Vertical Interpolation

CALL vert_interp (grid%t_gc , grid%pd_gc , &
grid%t_2 , grid%pb , &
grid%tmaxw , grid%ttrop , grid%pmaxw , grid%ptrop , &
grid%pmaxwnn , grid%ptropnn , &
flag_tmaxw , flag_ttrop , &
config_flags%maxw_horiz_pres_diff , &
config_flags%trop_horiz_pres_diff , &
config_flags%maxw_above_this_level , &
num_metgrid_levels , 'T' , &
interp_type , lagrange_order , t_extrap_type , &
lowest_lev_from_sfc , use_levels_below_ground , &
use_surface , zap_close_levels , force_sfc_in_vinterp , &
ids , ide , jds , jde , kds , kde , &
ims , ime , jms , jme , kms , kme , &
its , ite , jts , jte , kts , kte)

Tracers

• The WRF model is able to advect arrays of passive scalars
(tracer 4d array)

• As with all other variables going into the WRF model, this data is
available to be set in the real program

• These variables must be coordinated with the Registry
names, as the tracer index is an automatically manufactured name

Tracer Scalars
#
state real tr17_1 ikjftb tracer 1 - irhusdf=(bdy_interp:dt) \

"tr17_1" "tr17_1" "Dimensionless"

Tracers

• As with all 4d arrays, no space is allocated unless the packaged
variables are requested for processing at run-time

package tracer_test1 tracer_opt==2 - tracer:tr17_1

Tracers

! Template for initializing tracer arrays.
! A small plane in the middle of the domain at
! lowest model level is defined.

IF (config_flags%tracer_opt .eq. 2) THEN
DO j = (jde + jds)/2 - 4, (jde + jds)/2 + 4, 1
DO i = (ide + ids)/2 - 4, (ide + ids)/2 + 4, 1
IF ((its .LE. i .and. ite .GE. i) .and. &

(jts .LE. j .and. jte .GE. j)) THEN
tracer(i, 1, j, P_tr17_1) = 1.

END IF
END DO

END DO
END IF

Trajectories

• The user may specify (i,j,k) locations in the model domain to
follow parcels: traj_i, traj_j, traj_k (hard coded in the
module_initialize_real.F file)

• The current number of trajectory locations is small, 25, and is
a run-time option that the user sets in the nml file

&domain
num_traj = 25,

&physics
traj_opt = 1,

Trajectories

• The trajectory code uses the lat,lon locations, so the initial (i,j) value
of the lat,lon is assigned

IF (config_flags%num_traj .gt. 0 .and.
config_flags%traj_opt .gt. 0) THEN

DO j = (jde + jds)/2 - 2, (jde + jds)/2 + 2, 1
DO i = (ide + ids)/2 - 2, (ide + ids)/2 + 2, 1
IF (its .LE. i .and. ite .GE. i .and. &

jts .LE. j .and. jte .GE. j) THEN
grid%traj_i (icount) = i
grid%traj_j (icount) = j
grid%traj_k (icount) = 10
grid%traj_lat (icount) = grid%xlat(i,j)
grid%traj_long(icount) = grid%xlong(i,j)

END IF

Options

• When there are strong normal topo gradients along the outer
rows and columns of the most-coarse domain, smoothing the
topography to match the incoming first guess data is a good idea.

• This is the same sort processing that is done to make the child and
parent domains more consistent in the area of the LBC forcing

&domains
smooth_cg_topo = .true.
/

Options

• Time varying fields for longer simulations are available from the
technique set up for “SST Update”

• A new field will be automatically added to the input file to the WRF
model (provided by the real program) with a few changes to the
Registry file (Registry.EM_COMMON), specifying stream 4

state real my_new_field ij misc 1 - \
i024rhdu ”MY_NEW_FIELD" \
”SOME DESCRIPTION" ”SOME UNITS”

Options

• Information for using time varying data is specified at run-time
in the namelist file

&time_control
auxinput4_inname = "wrflowinp_d<domain>"
auxinput4_interval = 360
io_form_auxinput4 = 2

&physics
sst_update = 1

Real program in a nutshell: PART 3

• Access to everything
• Eta levels
• Metgrid flags
• Adding a variable for vertical interpolation
• Vertical interpolation
• Tracers
• Trajectories
• Options

Real program in a nutshell: PART 3

• Access to everything
• Eta levels
• Metgrid flags
• Adding a variable for vertical interpolation
• Vertical interpolation
• Tracers
• Trajectories
• Options

The Derived Data Type: grid

Example: grid%sst

Real program in a nutshell: PART 3

• Access to everything
• Eta levels
• Metgrid flags
• Adding a variable for vertical interpolation
• Vertical interpolation
• Tracers
• Trajectories
• Options

Completely user defined

May be different per domain

Be careful of the thicknesses

Tightly coupled with the model lid

Real program in a nutshell: PART 3

• Access to everything
• Eta levels
• Metgrid flags
• Adding a variable for vertical interpolation
• Vertical interpolation
• Tracers
• Trajectories
• Options

The metgrid program provides flags
for some internal communication
real to metgrid

These flags are defined inside the
METGRID.TBL file (for WPS) and
in the file
share/module_optional_input.F
(real)

Real program in a nutshell: PART 3

• Access to everything
• Eta levels
• Metgrid flags
• Adding a variable for vertical interpolation
• Vertical interpolation
• Tracers
• Trajectories
• Options

Requires new code inside real
Examples are easily available

Real program in a nutshell: PART 3

• Access to everything
• Eta levels
• Metgrid flags
• Adding a variable for vertical interpolation
• Vertical interpolation
• Tracers
• Trajectories
• Options

Always in dry pressure

Input vertical coordinate neutral

Real program in a nutshell: PART 3

• Access to everything
• Eta levels
• Metgrid flags
• Adding a variable for vertical interpolation
• Vertical interpolation
• Tracers
• Trajectories
• Options

Simple way to initialize passive
scalars

Users should provide info for which
tracers in the Registry, and select the
accompanying option in the namelist

Real program in a nutshell: PART 3

• Access to everything
• Eta levels
• Metgrid flags
• Adding a variable for vertical interpolation
• Vertical interpolation
• Tracers
• Trajectories
• Options

A simple (i,j,k) initialization for the
starting locations of trajectory points
is available

Choose the number of trajectory
points

Real program in a nutshell: PART 3

• Access to everything
• Eta levels
• Metgrid flags
• Adding a variable for vertical interpolation
• Vertical interpolation
• Tracers
• Trajectories
• Options

Users may smooth the outer rows
and columns so that the topography
on the coarse grid and the external
model are consistent

Users may add variables to streams
easily, an example is that the SST
update option could have a new field
included (for example, soil moisture)

