

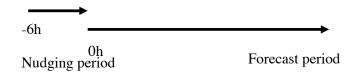
NCAR

WRF Four-Dimensional Data

Jimy Dudhia

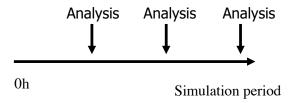
Assimilation (FDDA)

FDDA


- Method of nudging model towards observations or analysis
- May be used for
 - Dynamical initialization (pre-forecast period)
 - Creating 4D meteorological datasets (e.g. for air quality model)
 - Boundary conditions (outer domain nudged towards analysis)

Method

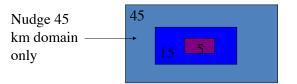
- Model is run with extra nudging terms for horizontal winds, temperature and water vapor
- In analysis nudging, these terms nudge point-bypoint to a 3d space- and time-interpolated analysis field
- In obs-nudging, points near observations are nudged based on model error at obs site
- The nudging is a relaxation term with a user-defined time scale around an hour or more
- Nudging will work with nesting and restarts


Dynamic Initialization

- Model domains are nudged towards analysis in a pre-forecast period of 6-12 hours
- This has benefit of smooth start up at forecast time zero

Four-Dimensional Met Analysis

- Produces analyses between normal analysis times
- High-resolution balanced and mass-continuity winds can be output to drive off-line air quality models


FDDA Methods

- Two Methods
 - Grid or analysis nudging (suitable for coarse resolution)
 - Observation or station nudging (suitable for fine-scale or asynoptic obs)
- Nudging can be applied to winds, temperature, and water vapor

Note: nudging terms are fake sources, so avoid FDDA use in dynamics or budget studies

Boundary Conditions

- Nudge an outer domain towards analysis through forecast
- This has benefit of providing smoother boundary conditions to domain of interest than if 15 km domain is the outer domain with interpolated-analysis boundary conditions

Analysis Nudging (grid_fdda=1)

 Each grid-point is nudged towards a value that is time-interpolated from analyses

From MM5: Stauffer and Seaman (1990 MWR, 1994 JAM)

$$\frac{\partial p^* \alpha}{\partial t} = F(\alpha, \mathbf{x}, t) + G_{\alpha} \cdot W_{\alpha} \cdot \epsilon_{\alpha}(\mathbf{x}) \cdot p^* (\hat{\alpha}_0 - \alpha)$$

In WRF p* is $\mu\nu$ and α is u,v,T or qF includes all the regular WRF terms

Analysis Nudging

$$\frac{\partial p^* \alpha}{\partial t} = F(\alpha, \mathbf{x}, t) + G_{\alpha} \cdot W_{\alpha} \cdot \epsilon_{\alpha}(\mathbf{x}) \cdot p^* (\hat{\alpha}_0 - \alpha)$$

- G is nudging inverse time scale
- W is vertical weight (upper air and surface)
- ε is a horizontal weight for obs density (not implemented)

Analysis Nudging

- 3d analysis nudging uses the WRF input fields at multiple times that are put in wrffdda_d01 file by program real when run with grid_fdda=1
 - With low time-resolution analyses, it is recommended not to use 3d grid-nudging in the boundary layer, especially for temperature
- Surface (2d) analysis nudging
 - · Nudges surface and boundary layer only

Analysis-Nudging namelist options

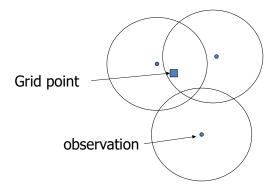
Can choose

- Frequency of nudging calculations (fgdt in minutes)
- Nudging time scale for each variable (guv, gt, gq in inverse seconds)
- Which variables not to nudge in the PBL (if_no_pbl_nudging_uv, etc.)
- Model level for each variable below which nudging is turned off (if_zfac_uv, k_zfac_uv, etc.)
- Ramping period over which nudging is turned off gradually (if_ramping, dt_ramp_min)

Surface Analysis Nudging

- 2d (surface) nudging (grid_fdda=1 and grid_sfdda=1) for surface analyses
 - wrfsfdda d01 file created by obsgrid.exe
 - Weights given by guv_sfc, gt_sfc, and gq_sfc
 - Note: grid_fdda=1 must be used to activate this. If upper-air nudging not wanted, set upper weights guv, gt, gq =0.
- In Version 3.8 we have FASDAS (grid_sfdda=2)
 - Flux-Adjusted Surface Data Assimilation System
 - This is a special option to also nudge the soil state
 - Only works with YSU PBL and Noah LSM

Spectral Nudging (grid_fdda=2)


- Spectral nudging does 3d nudging of only selected larger scales
 - Allows model small scales to evolve with no nudging
- This may be useful for controlling longer wave phases for long analysis-driven simulations (e.g. months to years)
 - Compensates for error due to low-frequency narrow lateral boundaries
 - Top wavenumber nudged is selected in namelist (xwavenum, ywavenum, e.g. =3)
 - Typically choose so that (domain size)/(wavenumber)=~1000 km in each direction
 - Nudges u, v, theta, geopotential (and optionally q since V4.0)
 - Can nudge in all levels or use ramp above a specified model level (if zfac ph, k zfac ph, dk zfac ph, etc.)

Obs Nudging (obs_nudge_opt=1)

 Each grid point is nudged using a weighted average of differences from observations within a radius of influence and time window

$$egin{aligned} rac{\partial p^* lpha}{\partial t} &= F(lpha, \mathbf{x}, t) + G_lpha \cdot p^* rac{\sum_{i=1}^N W_i^2(\mathbf{x}, t) \cdot \gamma_i \cdot (lpha_o - \hat{lpha})_i}{\sum_{i=1}^N W_i(\mathbf{x}, t)} \ &W(\mathbf{x}, t) = w_{xy} \cdot w_\sigma \cdot w_t \end{aligned}$$

Obs Nudging

Note: errors at obs sites are weighted by distance for nudging

Obs Nudging

$$w_{xy}=rac{R^2-D^2}{R^2+D^2}$$
 $0\leq D\leq R$ $w_{xy}=0$ $D>R,$

- R is radius of influence
- D is distance from ob modified by elevation difference

Obs Nudging

$$w_t = 1$$
 $|t-t_0| < au/2$ $w_t = rac{ au - |t-t_0|}{ au/2}$ $au/2 \leq |t-t_0| \leq au$

- t is the specified time window for the obs
- This is a function that ramps up and down

Obs-Nudging namelist options

Can choose

- Frequency of nudging calculations (iobs_ionf)
- Nudging time scale for each variable (obs_coef_wind, etc.)
- Horizontal and vertical radius of influence (obs_rinxy, obs_rinsig)
- Time window (obs_twindo)
- Ramping period over which nudging is turned off gradually (obs_idynin, obs_dtramp)

Obs Nudging

- w_{σ} is the vertical weighting usually the vertical influence is set small (0.005 eta-difference) so that data is only assimilated on its own eta level
- obs input file is a special ascii file (OBS_DOMAIN101) with obs sorted in chronological order
 - each record is the obs (u, v, T, Q) at a given model position and time
 - •Utility programs exist to convert data to this format from other common formats
 - •In V3.1 obsgrid.exe can create this file from standard observations that are in little r format

Vertical weighting functions

- Added flexibility options for advanced usage of obsnudging with surface observations (switches in run/README.namelist, e.g. obsnudgezfullr1_uv, etc.)
 - These allow specifying how variables are nudged in a profile with their full weight and/or ramp down function relative to the surface or PBL top in different regimes (stable or unstable).
 - Defaults are set to reasonable values, so these can be left out of namelist unless needed.

FDDA Summary

- FDDA grid nudging is suitable for coarser grid sizes where analysis can be better than model-produced fields
- Obs nudging can be used to assimilate asynoptic or high-frequency observations
- Grid and obs nudging can be combined
 FDDA has fake sources and sinks and so should not be used on the domain of interest and in the time period of interest for scientific studies and simulations

End