WRF Registry

Wei Wang July, 2018

Adapted from lectures by John Michalakes, NRL, and Dave Gill, NCAR

WRF Software Architecture

<u>Outline</u>

- WRF Registry
 - What is WRF Registry?
 - Keyword syntax
 - Three commonly used ones
- Some Examples
 - Runtime I/O mods
 - Adding a variable to the namelist
 - Adding an array to WRF
 - Adding a passive tracer

What is a Registry?

- Currently implemented as a text file:
 - Registry/Registry.EM_COMMON for WRF ARW
- What does it do?
 - Defines model arrays
 - Used to auto-generate many thousand lines of code
 - Defines arrays for input and output
 - Defines how nest feedback is used
 - Defines namelists
 - Defines how arrays are used (memory management)
 - Defines MPI communications

Registry Keywords

- Types of entry:
 - Dimspec Describes dimensions that are used to define arrays in the model
 - State Describes state variables and arrays in the domain structure
 - 11 Describes local variables and arrays in solve
 - *Typedef* Describes derived types that are subtypes of the domain structure

Registry Keywords

- Types of entry:
 - *Rconfig* Describes a configuration (e.g. namelist) variable or array
 - Package Describes attributes of a package (e.g. physics)
 - Halo Describes halo update interprocessor communications
 - *Period* Describes communications for periodic boundary updates
 - *Xpose* Describes communications for parallel matrix transposes
 - *include* Similar to a CPP #include file

Registry State Entry

#	Туре	Sym	Dims	Use	Tlev	Stag	IO	Dname	Descrip
state	real	tsk	ij	misc	1	-	i01rhud	"TSK"	"SKIN TEMP"

- Elements
 - Entry: The keyword "state"
 - Type: The type of the state variable or array (real, double, integer, logical, character, or derived)
 - *Sym*: The symbolic name of the variable or array
 - Dims: A string denoting the dimensionality of the array or a hyphen (-)
 - Use: A string denoting association with a solver or 4D scalar array, or a hyphen
 - NumTLev: An integer indicating the number of time levels (for arrays) or hypen (for variables)

Registry State Entry

#	Type Sym	Dims	Use	Tlev	Stag	IO	Dname	Descrip
state	real tsk	ij	misc	1	-	i01rhud	"TSK"	"SKIN TEMP"

- Elements
 - Stagger: String indicating staggered dimensions of variable (X, Y, Z, or hyphen)
 - IO: String indicating whether and how the variable is subject to various I/O and Nesting
 - DName: Metadata name for the variable in output
 - Units: Metadata units of the variable
 - Descrip: Metadata description of the variable

<pre>#Table> <dim> <order> <how defined=""></how></order></dim></pre>	 Three commonly used types state rconfig package
State Entry The entry can be used in an IO stream 	• The entry can be used in an IO stream
# Type Sym Dims Use Tlev Stag IO Dname Descrip state real tsk ij misc 1 - i01rhud "TSK" "SKIN TEMP"	<pre># Type Sym Dims Use Tlev Stag IO Dname Descrip state real tsk ij misc 1 - i01rhud "TSK" "SKIN TEMP"</pre>
 IO is a string that specifies if the variable is to be available to initial, restart, or history I/O. The string may consist of 'h' (subject to history I/O), 'i' (initial dataset), 'r' (restart dataset). The 'h', 'r', and 'i' specifiers may appear in any order or combination. 	 The 'h' and 'i' specifiers may be followed by an optional integer string consisting of '0', '1',, '9' Zero denotes that the variable is part of the principal input or history I/O stream (e.g. wrfinput, wrfout) The characters '1' through '9' denote one of the auxiliary input or history I/O streams. Double digit streams require "{}" braces: i01{19}{24}

Rconfig Entry

 #
 Type
 Sym
 How set
 Nentries
 Default

 rconfig
 integer
 spec_bdy_width
 namelist,bdy_control
 1
 1

- This defines namelist entries
- Elements
 - Entry: the keyword "rconfig"
 - *Type*: the type of the namelist variable (integer, real, logical, string)
 - Sym: the name of the namelist variable or array
 - How set: indicates how the variable is set: e.g. namelist or derived, and if namelist, which block of the namelist it is set in

State Entry

Only variables involved with I/O, communications, packages are required to be state

Variables required from one time step to next

Local variables inside of physics packages are not controlled by the Registry

Rconfig Entry

 #
 Type
 Sym
 How set
 Nentries
 Default

 rconfig
 integer spec_bdy_width
 namelist,bdy_control
 1
 1

- This defines namelist entries
- Elements
 - Nentries: specifies the dimensionality of the namelist variable or array. If 1 (one) it is a variable and applies to all domains; otherwise specify max_domains (which is an integer parameter defined in module_driver_constants.F).
 - *Default*: the default value of the variable to be used if none is specified in the namelist; hyphen (-) for no default

Package Entry

- Elements
 - Entry: the keyword "package",
 - Package name: the name of the package: e.g. "kesslerscheme"
 - Associated rconfig choice: the name of a rconfig variable and the value of that variable that choses this package

specification of microphysics options

passiveqv mp physics==0 moist:qv package kesslerscheme mp physics==1 package moist:qv,qc,qr package linscheme mp physics==2 moist:qv,qc,qr,qi,qs,qq package wsm3scheme mp physics==3 moist:qv,qc,qr mp physics==4 package wsm5scheme moist:qv,qc,qr,qi,qs

namelist entry that controls microphysics option
rconfig integer mp_physics namelist,physics max_domains

Outline

- Registry
- Examples
 - 1) Add output without recompiling
 - 2) Add a variable to the namelist
 - 3) Add an array
 - 4) Add a passive tracer

Package Entry

Elements

0

- Package state vars: unused at present; specify hyphen (-)
- Associated variables: the names of 4D scalar arrays (moist, chem, scalar) and the fields within those arrays this package uses, and the state variables (state:u_gc, ...)

<pre># specification of microphysics options</pre>									
package	passiveqv	mp_physics==0	-	moist:qv					
package	kesslerscheme	mp physics==1	-	moist:qv,qc,qr					
package	linscheme	mp_physics==2	-						
moist:qv,	moist:qv,qc,qr,qi,qs,qg								
package	wsm3scheme	<pre>mp_physics==3</pre>	-	moist:qv,qc,qr					
package	wsm5scheme	mp_physics==4	-	moist:qv,qc,qr,qi,qs					
# namelist entry that controls microphysics option									
Rconfig	integer mp_p	hysics namelis [.]	t,phy	vsics max_domains 0					

Example 1: Add output without recompiling

 Edit the namelist.input file, the time_control namelist record iofields_filename = "myoutfields.txt" (MAXDOM) io_form_auxhist24 = 2 (choose an available stream) auxhist24_interval = 10 (MAXDOM, every 10 minutes)

- Place the fields that you want in the named text file myoutfields.txt
- +: h: 24: RAINC, RAINNC

Where "+" means ADD this variable to the output stream, "h" is the history stream, and "24" is the stream number

Example 1: Remove output without recompiling

- Edit the namelist.input file, the time_control namelist record iofields_filename = "myoutfields.txt"
- Place the fields that you want in the named text file myoutfields.txt
- -: h: 0: W, PB, P

Where "-" means REMOVE this variable from the output stream, "h" is the history stream, and "0" is the stream number (standard WRF history file)

<u>Outline</u>

• Registry

• Examples

1) Add output without recompiling

2) Add a variable to the namelist

- 3) Add an array
- 4) Add a passive tracer

Example 1: What streams can I use?

- Generally history streams 10 24 are OK
- Avoid 22, 23
- Need LOTS more streams?
 - Edit WRFV3/arch/preamble_new
 - MAX_HISTORY = 25 <--- right now
 - clean -a, configure, compile, re-run real and wrf
- For production runs, it is more efficient to modify registry directly, and recompile it once.

Example 2: Add a variable to the namelist

- Use the examples for the rconfig section of the Registry
- Find a namelist variable similar to what you want
 - Integer vs real vs logical vs character
 - Single value vs value per domain
 - Select appropriate namelist record
- Insert your mods in all appropriate Registry files
 - Sometimes you need to add your mods to a different Registry for a different dynamical core

Example 2: Add a variable to the namelist

- Remember that ALL Registry changes require that the WRF code be cleaned and rebuilt
 - ./clean -a
 - ./configure
 - ./compile em_real

Example 2: Add a variable to the namelist

• You also have access to the namelist variables from the grid structure ...

SUBROUTINE foo (grid , ...)

USE module_domain TYPE(domain) :: grid

print *,grid%my_option_1

Example 2: Add a variable to the namelist

• Adding a variable to the namelist requires the inclusion of a new line in the Registry file:

rconfig integer my_option_1 namelist,time_control 1 0 - "my_option_1" "test namelist option" rconfig integer my_option_2 namelist,time_control max_domains 0

• Accessing the variable is through an automatically generated function:

USE module_configure INTEGER :: my_option_1 , my_option_2

CALL nl_get_my_option_1(1, my_option_1) CALL nl_set_my_option_2(grid%id, my_option_2)

Example 2: Add a variable to the namelist

• ... and you also have access to the namelist variables from config_flags

SUBROUTINE foo2 (config_flags , ...)

USE module_configure TYPE(grid_config_rec_type) :: config_flags

print *,config_flags%my_option_2

 Example 3: Add an Array Copy the "similar" field's line and make a few edits Remember, no Registry change takes effect until a "clean -a" and rebuild 	 Example 3: Add an Array Always modify Registry.core_name_COMMON or Registry.core_name, where core_name might be EM
state real h_diabatic ikj misc 1 - r \	state real h_diabatic ikj misc 1 - r
"h_diabatic" "PREVIOUS TIMESTEP CONDENSATIONAL HEATING"	"h_diabatic" "PREVIOUS TIMESTEP CONDENSATIONAL HEATING"
state real msft ij misc 1 - i012rhdu=(copy_fcnm) \	state real msft ij misc 1 - i012rhdu=(copy_fcnm)
"MAPFAC_M" "Map scale factor on mass grid"	"MAPFAC_M" "Map scale factor on mass grid"
state real ht ij misc 1 - i012rhdus \	state real ht ij misc 1 - i012rhdus
"HGT" "Terrain Height"	"HGT" "Terrain Height"
state real ht_input ij misc 1 \	state real ht_input ij misc 1
"HGT_INPUT" "Terrain Height from FG Input File"	"HGT_INPUT" "Terrain Height from FG Input File"
state real TSK_SAVE ij misc 1 \	state real TSK_SAVE ij misc 1
"TSK_SAVE" "SURFACE SKIN TEMPERATURE" "K"	"TSK_SAVE" "SURFACE SKIN TEMPERATURE" "K"

Example 3: Add an Array

- Add a new 3D array that is sum of all moisture species, called all_moist, in the Registry.EM_COMMON
 - Type: real
 - Dimensions: 3D and ikj ordering, not staggered
 - Supposed to be output only: h
 - Name in netCDF file: ALL_MOIST

```
state real all_moist ikj \
misc 1 - h \
"ALL_MOIST" \
"sum of all of moisture species" \
"kg kg-1"
```

Example 3: Add an Array

• Registry state variables become part of the derived data structure usually called grid inside of the WRF model.

1

1

1

١

1

- WRF model top \rightarrow integrate \rightarrow solve_interface \rightarrow solve
- Each step, the grid construct is carried along for the ride
- No source changes for new output variables required until below the solver routine when dereferenced by first_rk_step_part1 for the physics drivers

Example 3: Add an Array

- Top of solve_em.F
- grid is passed in
- No need to declare any new variables, such as all_moist

!WRF:MEDIATION_LAYER:SOLVER

SUBROUTINE solve_em (grid , &

config_flags , &

Example 3: Add an Array

- After the array is re-referenced from grid and we are inside the microphysics_driver routine, we need to
 - Pass the variable through the argument list
 - Declare our passed in 3D array

,all_moist &

REAL, DIMENSION(ims:ime ,kms:kme ,jms:jme), & INTENT(OUT) :: all_moist

Example 3: Add an Array

- In solve_em, add the new array to the call for the microphysics driver
- Syntax for variable=local_variable is an association convenience
- All state arrays are contained within grid, and must be de-referenced

CALL microphysics_driver(QV_CURR=moist(ims,kms,jms,P_QV), & QC_CURR=moist(ims,kms,jms,P_QC), & QR_CURR=moist(ims,kms,jms,P_QR), & QI_CURR=moist(ims,kms,jms,P_QI), & QS_CURR=moist(ims,kms,jms,P_QS), & QG_CURR=moist(ims,kms,jms,P_QG), & QH_CURR=moist(ims,kms,jms,P_QH), &

all_moist=grid%all_moist , &

Example 3: Add an Array

- After the array is re-referenced from grid and we are inside the microphysics_driver routine, we need to
 - Zero out the array at each time step
 - Use the correct loop indices

! Zero out moisture sum.

DO j = jts,MIN(jde-1,jte)
DO k = kts,kte
DO i = its,MIN(ide-1,ite)
 all_moist(i,k,j) = 0.0
END DO
END DO
END DO
END DO

Tracer Example

Modify the real and WRF programs to initialize and continuously re-supply the "PLUME" array

dyn_em/module_initialize_real.F (initial value from real.exe)
dyn_em/solve_em.F (continuous plume in wrf.exe)

! Add in the Fukushima initial venting.

IF ((its .LE. 50) .AND. (ite .GE. 50) .AND. &
 (jts .LE. 50) .AND. (jte .GE. 50)) THEN
 tracer(50,1:5,50,P_plume) = 1.
END IF

Tracer Example

- Modify the test/em_real/namelist.input file
- Include the new settings for the tracer option required from the Registry file

&dynamics
tracer_opt = 3, 3, 3,

<u>Summary</u>

- WRF Registry
 - What is the registry
 - Keyword syntax
 - Three commonly used types
- Examples
 - Adding and removing output
 - Adding a variable to the namelist
 - Adding an array
 - Adding a tracer