WRF Registry

Wei Wang
July, 2018

Adapted from lectures by
John Michalakes, NRL, and Dave Gill, NCAR

S ncar Y

Outline

WRF Registry

— What is WRF Registry?

— Keyword syntax

— Three commonly used ones
Some Examples

— Runtime I/O mods

— Adding a variable to the namelist
— Adding an array to WRF

— Adding a passive tracer

WREF Software Architecture

Driver
Registry
Config DM comm
. Solve — /O APT
Inquiry OMP
B |8 e fi
Config WREF Tile-callable 5 (3.8 pan e
Module Subroutines E L3
> A
1

Text based file for the model
Active data dictionary

Used to auto generate source

Controls/defines

Variables (I/0, comms,

nesting)
Communications
namelist options

About 300k lines added to source
Easy — 3x the size since initial release
Compile-time option

Jclean

Jconfigure

.Jcompile
Registry. EM_COMMON

What is a Reqistry?

e Currently implemented as a text file:

Registry/Registry.EM_COMMON for WRF ARW

¢ What does it do?

Defines model arrays

Used to auto-generate many thousand lines of code
Defines arrays for input and output

Defines how nest feedback is used

Defines namelists

Defines how arrays are used (memory management)
Defines MPI communications

Reaqistry Keywords

e Types of entry:

— Dimspec — Describes dimensions that are used to define
arrays in the model

— State — Describes state variables and arrays in the domain
structure

— 11— Describes local variables and arrays in solve

— Typedef — Describes derived types that are subtypes of
the domain structure

Registry Keywords

¢ Types of entry:

— Rconfig — Describes a configuration (e.g. namelist)
variable or array

— Package — Describes attributes of a package (e.g. physics)

— Halo — Describes halo update interprocessor
communications

— Period — Describes communications for periodic boundary
updates

— Xpose — Describes communications for parallel matrix
transposes

— include — Similar to a CPP #include file

Reqistry State Entry

Type Sym Dims Use Tlev Stag I0 Dname Descrip
state real tsk ij misc 1 - i0lrhud “TSK" ”SKIN TEMP“
e Elements

— Entry: The keyword “state”

— Type: The type of the state variable or array (real, double,
integer, logical, character, or derived)

— Sym: The symbolic name of the variable or array

— Dims: A string denoting the dimensionality of the array or a
hyphen (-)

— Use: A string denoting association with a solver or 4D scalar
array, or a hyphen

— NumTLev: An integer indicating the number of time levels (for
arrays) or hypen (for variables)

Registry State Entry

Type Sym Dims Use Tlev Stag 10 Dname Descrip
state real tsk ij misc 1 - i0lrhud “TSK" ”SKIN TEMP“
e Elements

— Stagger: String indicating staggered dimensions of variable (X,
Y, Z, or hyphen)

— 10: String indicating whether and how the variable is subject to
various 1/0 and Nesting

— DName: Metadata name for the variable in output

— Units: Metadata units of the variable

— Descrip: Metadata description of the variable

reqistry.dimspec: where dimensions are defined

#<Table> <Dim> <Order> <How defined> <Coord-axis> <Dimname in Datasets>

dimspec i 1 standard_domain x west_east

dimspec] 3 standard_domain y south north

dimspec k 2 standard_domain z bottom_top

dimspec lin 2 namelist=num metgrid soil_levels =z num_metgrid_soil_levels
dimspec snly 2 namelist=num_snow_layers z snow_layers

dimspec 1 2 namelist=num_soil_layers z soil layers

dimspec ulay 2 namelist=num urban_layers z urban_layers

In Registry.EM_COMMON

"em"
"em"

state real soil_layers i{lin}j misc 1 z il "SOIL LAYERS" "SOIL LAYERS"

state real soil_levels i{lin}j misc 1 2z il "SOIL LEVELS" "SOIL LEVELS"

state real st i{lin}j misc 1 2z il "sT" "SOIL TEMPERATURES"
g

state real sm i{lin}j misc 1 z il "sM" "SOIL MOISTURES" "m3 m-

3

e Three commonly used types
1) state
2) rconfig
3) package

State Entry

e The entry can be used in an 10 stream

Type Sym Dims Use Tlev Stag I0 Dname Descrip

o “TSK" “SKIN TEMP"“

* |0 is a string that specifies if the variable is to be
available to initial, restart, or history I/O. The string
may consist of 'h' (subject to history 1/0), 'i' (initial
dataset), 'r' (restart dataset).

* The'h','r', and 'i' specifiers may appear in any order
or combination.

state real tsk ij misc 1

State Entry

e The entry can be used in an 10 stream

Type Sym Dims Use Tlev Stag I0 Dname Descrip

= “TSK" “SKIN TEMP®

state real tsk ij misc 1

* The ‘h’ and ‘i’ specifiers may be followed by an optional integer
string consisting of ‘0’, ‘1/, ..., ‘9’

* Zero denotes that the variable is part of the principal input or
history I/0O stream (e.g. wrfinput, wrfout)

* The characters ‘1’ through ‘9’ denote one of the auxiliary input or
history 1/O streams.

* Double digit streams require “{}” braces: i01{19}{24}

State Entry

e The variable can communicate between nests

Type Sym Dims Use Tlev Stag I0 Dname Descrip
state real tsk ij misc 1 = WPSK" “SKIN TEMP“

usdf refers to nesting options:
u=UP,d=DOWN, s = SMOOQOTH, f = FORCE

u — at end of each set of child time steps

d — at instantiation of child domain

f — at beginning of each set of child time steps
s — after each feedback

State Ent

Only variables involved with 1/0, communications,
packages are required to be state

Variables required from one time step to next

Local variables inside of physics packages are not
controlled by the Registry

Rconfig Entry

Type Sym How set Nentries Default
rconfig integer spec_bdy width namelist,bdy control 1 1

e This defines namelist entries

e Elements

Entry: the keyword “rconfig”

Type: the type of the namelist variable (integer, real,
logical, string)

Sym: the name of the namelist variable or array

How set: indicates how the variable is set: e.g.
namelist or derived, and if namelist, which block of
the namelist it is set in

Rconfig Entry

Type Sym How set Nentries Default
rconfig integer spec_bdy width namelist,bdy control al al

e This defines namelist entries

e Elements

— Nentries: specifies the dimensionality of the namelist variable or
array. If 1 (one) it is a variable and applies to all domains;
otherwise specify max_domains (which is an integer parameter
defined in module_driver_constants.F).

— Default: the default value of the variable to be used if none is
specified in the namelist; hyphen (-) for no default

Package Entry

e Elements
— Entry: the keyword “package”,

— Package name: the name of the package: e.g. “kesslerscheme”

— Associated rconfig choice: the name of a rconfig variable and
the value of that variable that choses this package

specification of microphysics options

package passiveqv mp_physics== = moist:qv

package kesslerscheme mp physics== - moist:qv,qgc,gr
package linscheme mp_physics== =
moist:qv,qc,qr,qi,qs,qg

package wsm3scheme mp_physics== - moist:qv,qgc,qr
package wsm5scheme mp_physics== = moist:qv,qc,qr,qi,gs

namelist entry that controls microphysics option
rconfig integer mp_physics namelist,physics max_domains

Package Entry

e Elements

— Package state vars: unused at present; specify hyphen (-)

— Associated variables: the names of 4D scalar arrays (moist,
chem, scalar) and the fields within those arrays this package

uses, and the state variables (state:u_gc, ...)

specification of microphysics options

package passiveqv mp_physics== = moist:qv

package kesslerscheme mp physics== - moist:qv,qc,gr
package linscheme mp_physics== =
moist:qv,qc,qr,qi,qs,qg

package wsm3scheme mp_physics== - moist:qv,qc,gr
package wsm5scheme mp_physics== = moist:qv,qc,qr,qi,gs

namelist entry that controls microphysics option
Rconfig integer mp_physics namelist,physics max_domains

Outline

e Examples
1) Add output without recompiling
2) Add a variable to the namelist
3) Add an array
4) Add a passive tracer

Example 1: Add output without recompiling

¢ Edit the namelist.input file, the time_control namelist record
iofields_filename = "myoutfields.txt” (MAXDOM)
io_form auxhist24 = 2 (choose an available stream)
auxhist24_interval = 10 (MAXDOM, every 10 minutes)

¢ Place the fields that you want in the named text file
myoutfields. txt
+:h:24:RAINC,RAINNC

Where “+” means ADD this variable to the output stream, “h” is the history
stream, and “24” is the stream number

Example 1: Remove output without recompiling

e Edit the namelist.input file, the time_control namelist record

iofields filename = "myoutfields.txt”

¢ Place the fields that you want in the named text file
myoutfields. txt
-:h:0:W,PB,P

Where “~” means REMOVE this variable from the output stream, “h” is the
history stream, and “0” is the stream number (standard WRF history file)

Example 1: What streams can | use?

Generally history streams 10 — 24 are OK
Avoid 22, 23

Need LOTS more streams?
— Edit WRFV3/arch/preamble_new
MAX_HISTORY =25 <---right now

— clean —a, configure, compile, re-run real and wrf

For production runs, it is more efficient to modify
registry directly, and recompile it once.

Outline

e Examples

2) Add a variable to the namelist
3) Add an array
4) Add a passive tracer

Example 2: Add a variable to the namelist

e Use the examples for the rconfig section of the Registry

¢ Find a namelist variable similar to what you want
— Integer vs real vs logical vs character
— Single value vs value per domain
— Select appropriate namelist record

¢ Insert your mods in all appropriate Registry files

— Sometimes you need to add your mods to a different
Registry for a different dynamical core

Example 2: Add a variable to the namelist

e Remember that ALL Registry changes require that the
WREF code be cleaned and rebuilt
./clean -a
./configure
./compile em real

Example 2: Add a variable to the namelist

e Adding a variable to the namelist requires the inclusion of a new line in

the Registry file:

2

rconfig integer my_option_1 namelist,time_control 1 0 - "my_option_1" "test namelist option”
rconfig integer my_option_2 namelist,time_control max_domains O

e Accessing the variable is through an automatically generated function:

USE module_configure
INTEGER :: my_option_1 , my_option_2

CALL nl_get_my_option_1(1, my_option_1)
CALL nl_set_my_option_2(grid%id, my_option_2)

Example 2: Add a variable to the namelist

¢ You also have access to the namelist variables from the grid structure ...

SUBROUTINE foo (grid , ...)

USE module_domain
TYPE(domain) :: grid

print *,grid%my_option_1

Example 2: Add a variable to the namelist

e .. and you also have access to the namelist variables from config_flags

SUBROUTINE foo2 (config_flags , ...)

USE module_configure
TYPE(grid_config_rec_type) :: config_flags

print *,config_flags%my_option_2

Example 2: Add a variable to the namelist Outline

e What your variable looks like in the namelist.input file *

e Examples
&time control
run_days =0,
run_hours =0, 3) Add an array
run_minutes = 40, 4) Add a passive tracer
run_seconds =0,
start_year = 2006, 2006, 2006,
my option 1 = 17
my option_ 2 =1, 2, 3
Example 3: Add an Array Example 3: Add an Array
e Adding a state array to the solver, requires adding a
single line in the Registry e Select a variable similar to one that you would like to add
— 1d, 2d, or 3d

¢ Use the previous Registry instructions for a state or |1

variable — Staggered (X, Y, Z, or not “-”, do not leave blank)

Associated with a package

Part of a 4d array

Input (012), output, restart

Nesting, lateral forcing, feedback

Example 3: Add an Array

e Copy the “similar” field’s line and make a few edits

¢ Remember, no Registry change takes effect until a “clean
-a” and rebuild

state real h_diabatic ikj misc 1 - r \
"h_diabatic“ "PREVIOUS TIMESTEP CONDENSATIONAL HEATING"

state real msft ij misc 1 - i0l12rhdu=(copy_fcnm) \
"MAPFAC_M" "Map scale factor on mass grid"

state real ht ij misc 1 - i01l2rhdus \
"HGT" "Terrain Height"

state real ht_input ij misc 1 - - \
"HGT_INPUT" "Terrain Height from FG Input File"

state real TSK_SAVE ij misc 1 - - \
"TSK_SAVE" "SURFACE SKIN TEMPERATURE" "K"

Example 3: Add an Array

Always modify Registry.core_name_COMMON or
Registry.core_name, where core_name might be EM

state

state

state

state

state

real h_diabatic ikj misc 1 - r

"h_diabatic" "PREVIOUS TIMESTEP CONDENSATIONAL HEATING"
real msft ij misc 1 - i012rhdu=(copy_fcnm)
"MAPFAC_M" "Map scale factor on mass grid"

real ht ij misc 1 - i012rhdus

"HGT" "Terrain Height"

real ht_input ij misc 1 - -

"HGT_INPUT" "Terrain Height from FG Input File"

real TSK_SAVE ij misc 1 - -

"TSK_SAVE" "SURFACE SKIN TEMPERATURE" "K"

Example 3: Add an Array

e Add a new 3D array that is sum of all moisture species,
called all_moist, in the Registry.EM_COMMON

Type: real

Dimensions: 3D and ikj ordering, not staggered

Supposed to be output only: h
Name in netCDF file: ALL_MOIST

state real all moist ikj \
misc 1 - h \
"ALL_MOIST" \
"sum of all of moisture species” \

"kg kg—l"

Example 3: Add an Array

Registry state variables become part of the derived data
structure usually called grid inside of the WRF model.

WRF model top = integrate = solve_interface - solve
Each step, the grid construct is carried along for the ride

No source changes for new output variables required
until below the solver routine when dereferenced by
first_rk_step_partl for the physics drivers

Example 3: Add an Array

¢ Top of solve_em.F
e gridis passed in

¢ No need to declare any new variables, such as all_moist

Example 3: Add an Array

¢ Insolve_em, add the new array to the call for the microphysics driver

e Syntax for variable=local_variable is an association convenience

e All state arrays are contained within grid, and must be de-referenced

!WRF :MEDIATION_ LAYER:SOLVER
SUBROUTINE solve _em (grid , &

config flags , &

CALL microphysics_driver (&
OV_CURR=moist (ims,kms,jms,P_0OV),
OC_CURR=moist (ims,kms,jms,P_0OC),
OR_CURR=moist (ims,kms,jms,P_OR),
QI _CURR=moist (ims,kms,jms,P_OQOI),
0S CURR=moist (ims,kms,jms,P_0S),
OG_CURR=moist (ims,kms,jms,P_0G),
OH_CURR=moist (ims,kms,jms,P_OQOH),
all moist=grid%all moist ;

2R

Example 3: Add an Array

o After the array is re-referenced from grid and we are
inside the microphysics_driver routine, we need to

— Pass the variable through the argument list

— Declare our passed in 3D array

,all_moist &

REAL, DIMENSION(ims:ime ,kms:kme ,jms:jme), &
INTENT (OUT) :: all moist

Example 3: Add an Array

o After the array is re-referenced from grid and we are
inside the microphysics_driver routine, we need to

— Zero out the array at each time step

— Use the correct loop indices

! Zero out moisture sum.

DO j = jts,MIN(jde-1,jte)

DO k = kts, kte

DO i = its,MIN(ide-1,ite)
all moist(i,k,j) = 0.0

END DO

END DO

END DO

Example 3: Add an Array

o After the array is re-referenced from grid and we are

inside the microphysics_driver routine, we need to

— At the end of the routine, for each of the moist species

that exists, add that component to all_moist

DO j jts,MIN(jde-1,jte)
DO k = kts, kte
IF (£ OV) THEN
DO i = its,MIN(ide-1,ite)

Outline

e Examples

4) Add a passive tracer

all moist(i,k,j) = all_moist(i,k,j) + &
qv_curr(i,k,j)
END DO
END IF
Tracer Example Tracer Example
Modify Registry for new fields.
Use the “tracer” array with a new 3D component Registry/Registry.EM add our new field “PLUME” as part of
Use existing NML op JYZY = “TRACER” array.
T RYUsSHU HOKKAIDO
S Ehkst Tokara- Sapporog .m“
e . . Chinkz Sea shoto Park
Initialize data in real. _—
shotd ¢ Sea of Japan I omori # New tracer for example
1 11 H East Sea
Identify (i,j) location Okinawa-honté g Okinawa state real plume ikjftb tracer \
Spread in “PBL” S i - - 1 - irhusdf=(bdy interp:dt) \
Yacyama-shotd Noto-l'hl"to’“(0 .
P PACIFIC "PLUME" "Fukushima Tracer" " "
SOUTH FAYAN OCEAN
KOREA Jnatsue M!Fu]‘l &gm‘
i ros M o
Set values in solver. Hiroshima oXYPI%® Nagoya é,_ # 4D arrays need an associated package
“Release” pertime s| gyosuo B85 Gukoxt package tracer test3 tracer opt==3 - \
Kirishima » ®| O C—————300 km
National >eagaia 0 240 miles ~——————tracer:plume

See Inset Park

Tracer Example

Modify the real and WRF programs to initialize and continuously
re-supply the “PLUME” array

dyn_em/module_initialize_real.F (initial value from real.exe)

dyn_em/solve_em.F (continuous plume in wrf.exe)

Tracer Example

o Modify the test/em_real/namelist.input file

¢ Include the new settings for the tracer option required from the

Registry file

! Add in the Fukushima initial venting.

IF ((its .LE. 50) .AND. (ite .GE. 50) .AND. &
(jts .LE. 50) .AND. (jte .GE. 50)) THEN
tracer (50,1:5,50,P plume) = 1.

&dynamics
tracer opt = 3, 3, 3,

END IF
Fukushima 11-14 Mar 2011, 30-km, 100100 (-}
Tracer k M
oy
e \WRF Registry
“n — What is the registry
— Keyword syntax
Pl — Three commonly used types
e Examples
a0 — Adding and removing output
— Adding a variable to the namelist
— Adding an array
—
— Adding a tracer

130 135°E 140°E 145°E 150
Fukushima 11-14 Mar 2011, 30-4m, 100%100 ()

[a 2 4 A 5 A 7 B8 £} 1

