

Advanced Usage of the WRF **Preprocessing System**

Michael Duda

The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder

*NCAR is sponsored by the National Science Foundation

The GEOGRID.TBL File

- GEOGRID.TBL is the file that determines which fields are interpolated by geogrid at runtime
 - Each entry in GEOGRID.TBL corresponds to one field to be produced by geogrid
 - When new data sources are involved, or when the default treatment of fields is inadequate, user may want/need to edit GEOGRID.TBL
 - However, default GEOGRID.TBL is sufficient to initialize a WRF simulation

The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder

Outline

- The GEOGRID.TBL file
 - What is the GEOGRID.TBL file?
 - Ingesting new static fields
 - Examples: Using high-resolution land use and topography data
- The METGRID.TBL file
 - What is the METGRID.TBL file?
 - Example: Defining interpolation options for a new field
 - Example: Using the METGRID.TBL file for a real-time system
- Utility programs example: fixing "hot lakes"

The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder

The GEOGRID.TBL File

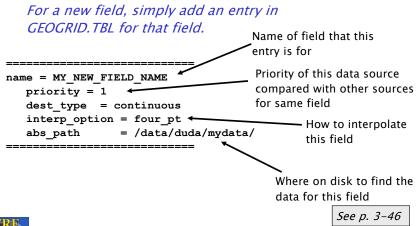
- Format of GEOGRID.TBL file is simple text, with specifications of the form keyword= value
- Example entry for a 30" landuse data set:

```
name=LANDUSEF
                # Houston, TX urban data
       priority
       dest type = categorical
       z dim name = land cat
       interp option = 30s:nearest neighbor
       abs path = 30s:/users/duda/Houston/
```

For a complete list of possible keywords See p. 3-46

The GEOGRID.TBL File

- Using the GEOGRID.TBL, we can
 - Change the method(s) used to interpolate a field
 - Apply smoothing filters to continuous fields
 - Derive fields from others
 - E.g., dominant category or slope fields
 - Add new data for geogrid to interpolate



The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder

5

1) Completely new fields

Completely new fields:

New Fields in GEOGRID.TBL

There are three basic types of new data to be added through the GEOGRID.TBL file:

- 1) Completely new fields
 - fields that were previously not processed by geogrid
- 2) Different resolution data sets for an existing field
 - Such sources do not need to be supplemented by existing data
 - E.g., Adding a 90-meter resolution topography data set
- 3) Alternative sources for a field that *must be used in addition to an existing source*
 - E.g., A new soil category data set exists, but covers only South Korea

The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder

(

2) Different resolution data set

Different resolution data sets for an existing field:

Specify the path to the new data set and which interpolation methods should be used for the new resolution in the existing entry for that field.

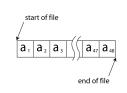
```
name = HGT_M
    priority = 1
    dest_type = continuous
    smooth_option = smth-desmth
    interp_option = 30s:special(4.0)+four_pt
    interp_option = my_res:four_pt
    interp_option = default:four_pt
    interp_option = 30s:topo_30s/
    rel_path= my_res:new_topo_directory/
    rel_path= default:topo_2m/
```


3) Alternative data sources

Alternative sources for a field that must be used in addition to an existing source:

Add a new entry for the field that has the same name as the field's existing entry, but make priority of new entry <u>higher</u>.

9


11

The Geogrid Data Format

The geogrid format is a simple binary raster

- Elements of a rectangular array of data are written, row by row, to a file
- No record markers or any type of metadata are written to this file

8 rows	a 43	a 44	a 45	a 46	a 47	a 48
	a 37	a 38	a 39	a 40	a ₄₁	a 42
		a 32				
	a 25	a 26	a 27	a 28	a 29	a 30
	a 19	a 20	a 21	a 22	a 23	a 24
	a ₁₃	a ₁₄	a15	a ₁₆	a ₁₇	a ₁₈
	a,	a _s	a,	a 10	a ₁₁	a 12
	a ₁	a ₂	а₃	a₄	a,	a 6
6 columns						

A file containing a N×M array, with each element represented using K bytes, should have size exactly N*M*K bytes!

See p. 3-37

The WRF Users' Basic Tutorial 28 January – 1 February 2019, Boulder

Preparing new geogrid data sets

To add a new data source, we need to

- 1) Write the data in the proper binary format
 - See Chapter 3: "Writing Static Data to the Geogrid Binary Format"
 - Can make use of read_geogrid.c and write_geogrid.c
- 2) Create an "index" metadata file for the data set
 - This tells geogrid about the projection, coverage, resolution, type, and storage representation of the data set
- 3) Add/edit entry for the data in the GEOGRID.TBL file
 - The change to GEOGRID.TBL will follow one of the three cases mentioned before

The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder 10

The Geogrid Data Format

Since the contents of the file contain <u>only</u> the values from the array, *care must be taken if using Fortran to write the array*

- Fortran unformatted writes add *record markers* to the beginning and end of each record
- So, rather than $X_1X_2X_3...X_{n-1}X_n$ we get $RX_1X_2X_3...X_{n-1}X_nR$, where R is a record marker

Instead of Fortran, the C routines read_geogrid.c and
 write_geogrid.c may be used to read and write binary
 files

- these may be called from either Fortran or C

The Geogrid Data Format

From python, one can use

numpy.fromfile(file, dtype=dt)

to read the geogrid binary files, and

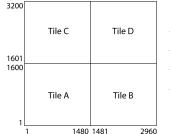
numpy.ndarray.tofile(file)

to write the geogrid binary files.

The dtype argument and numpy.ndarray.astype may be used to match the *wordsize* and *endianness* used in the binary file!

· Values are always represented as integers

The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder


13

15

The Geogrid Data Format

If the data are not available in a single tile (array), multiple files may be used to store the data

- All tiles must have the same x-dimension
- · All tiles must have the same y-dimension
- If necessary, a tile can be "padded" with missing values to expand it to the same size as other tiles in the data set

Tile A named 00001-01480.00001-01600
Tile B named 01481-02960.00001-01600

Tile C named 00001-01480.01601-03200

Tile D named 01481-02960.01601-03200

28 Ja

The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder

The Geogrid Data Format

The filenames of geogrid binary files should have the form:

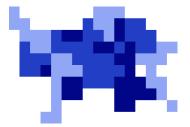
xxxxx-XXXXX.yyyyy-YYYYY

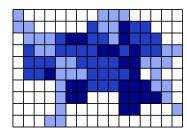
where

xxxxx is the starting x-index XXXXX is the ending x-index yyyyy is the starting y-index YYYYY is the ending y-index

E.g., For a binary file containing an array with 500 columns and 750 rows, the file name would be

00001-00500.00001-00750

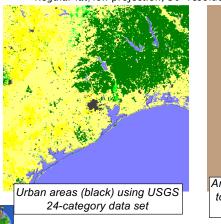


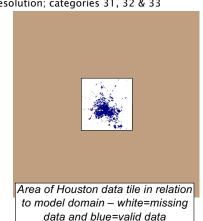

The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder 14

The Geogrid Data Format

If the data do not cover a rectangular region, areas with no data are simply filled with a missing value so that the overall data set is rectangular

 The particular missing value used in the data set is specified in the index metadata file for the data set

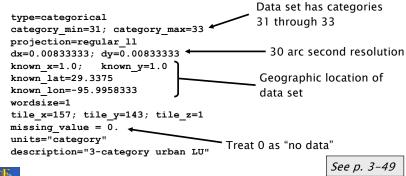




Example: Houston LU Data Set

- Given dataset for new Houston urban land use categories
 - Regular lat/lon projection, 30" resolution; categories 31, 32 & 33

The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder

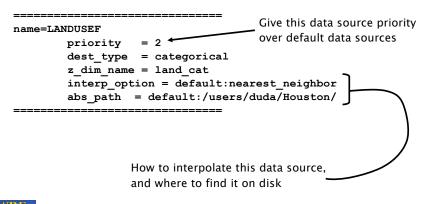

17

19

Example: Houston LU Data Set

To make use of the new data, we do the following:

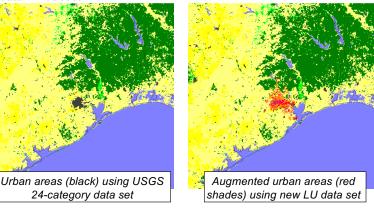
- 1) Write the data to the binary format used by geogrid
- 2) Create an index file for the data



The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder 1.0

Example: Houston LU Data Set

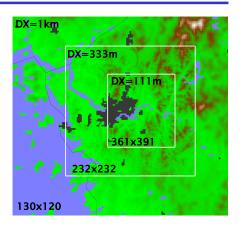
3) Define an entry for the data in GEOGRID.TBL



Example: Houston LU Data Set

4) Run geogrid.exe

Any gridpoints covered by Houston data will use it; otherwise default USGS data will be used

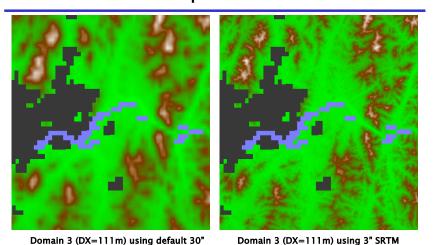

Example: South Korea

Shuttle Radar Topography Mission (SRTM) 3 arc second topography data

We would like to use the SRTM data, especially for domains 2 and 3.

Follow steps for adding a new resolution for an existing data set (case 2)

GMTED2010 topography



The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder

2

23

Example: Seoul

The WRF Users' Basic Tutorial

28 January - 1 February 2019, Boulder

topography

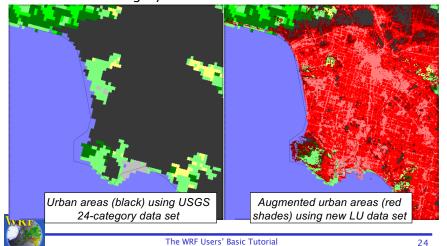
Example: Seoul

To use the SRTM topography data, we

- 1) Write data to geogrid binary format
- 2) Create an index file for the data set
- 3) Modify the GEOGRID.TBL entries for HGT_M, HGT_U, and HGT_V

```
name = HGT_M
    priority = 1
    dest_type = continuous
    interp_option = default:average_gcell(4.0)+four_pt
    interp_option = SRTM:four_pt
    rel_path = default:gmted2010_30s/
    rel_path = SRTM:SRTM/
```

4) Specify that we should interpolate from SRTM in namelist by setting geog data res = 'default','SRTM+default','SRTM+default'



The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder

2

Another Example: Los Angeles

For Los Angeles, we have a 30-meter resolution, 3 urban land use category data set

28 January - 1 February 2019, Boulder

Outline

- The GEOGRID.TBL file
 - What is the GEOGRID.TBL file?
 - Ingesting new static fields
 - Examples: Using high-resolution land use and topography data
- The METGRID.TBL file
 - What is the METGRID.TBL file?
 - Example: Defining interpolation options for a new field
 - Example: Using the METGRID.TBL file for a real-time system
- Utility programs example: fixing "hot lakes"

The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder 25

The METGRID.TBL File

- Suitable entries in METGRID.TBL are provided for common fields
 - Thus, many users will rarely need to edit METGRID.TBL
- When necessary, different interpolation methods (and other options) can be set in METGRID.TBL
 - Interpolation options can depend on the source of a field

The METGRID.TBL File

The METGRID.TBL file controls how meteorological fields are interpolated

- Unlike GEOGRID.TBL, METGRID.TBL does not determine which fields will be processed, only how to process them if they are encountered
- Every field in intermediate files will be interpolated
 - If no entry in METGRID.TBL for a field, a default interpolation scheme (<u>nearest neighbor</u>) will be used
 - It is possible to specify in METGRID.TBL that a field should be discarded

The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder

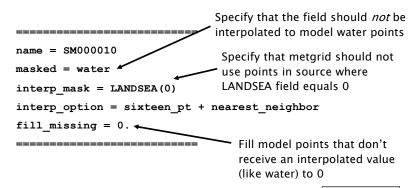
26

The METGRID.TBL File

 Example METGRID.TBL entry (for "soil moisture 0–10 cm")

Example: A new METGRID.TBL entry

- Suppose we have a 1000x1000 domain over Houston (dx=500 m)
 - This is the same domain as in the urban land use example
- Meteorological data come from 1-degree GFS
 - Note that we will be interpolating 1-degree data onto a 500-m grid!
- We want to create an entry for a new soil moisture field, SM000010


The WRF Users' Basic Tutorial 28 January – 1 February 2019, Boulder

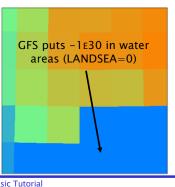
29

31

Example: A new METGRID.TBL entry

 We add an initial entry in METGRID.TBL for SM000010:

The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder

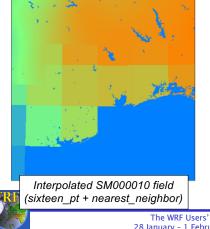

For a complete list of possible keywords | See p. 3-52

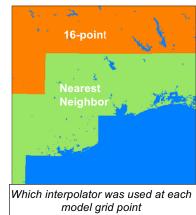
Example: A new METGRID.TBL entry

Initially, we run metgrid.exe and get the message:

INFORM: Entry in METGRID.TBL not found for field SM000010. Default options will be used for this field!

- The resulting SM000010 field looks very coarse
- We need to create a METGRID.TBL entry so metgrid will know how to interpolate this field!

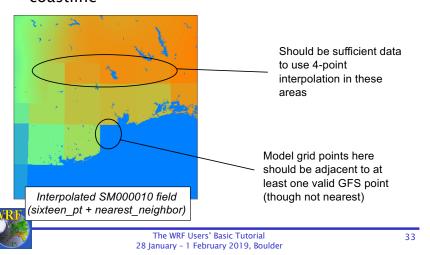




The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder 30

Example: A new METGRID.TBL entry

 Now, after running metgrid.exe again, the SM000010 field looks like



The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder

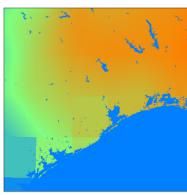
Example: A new METGRID.TBL entry

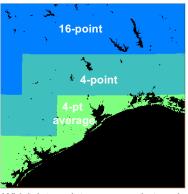
• But, the interpolated field still looks bad near the coastline

Example: A new METGRID.TBL entry

• Update the METGRID.TBL entry for SM000010

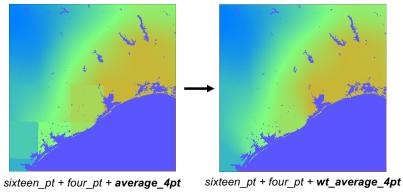
name = SM000010masked = water interp mask = LANDSEA(0) interp option = sixteen pt + four pt + average 4pt fill missing = 0. _____


- If 16-pt doesn't work, then try 4-pt before reverting to a 4-point average
 - Note that 4-point average will work anywhere nearest_neighbor would (missing/masked values not counted in the average)


The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder 34

Example: A new METGRID.TBL entry

• The resulting field, below-left:


Interpolated SM000010 field (sixteen pt + four pt + average 4pt)

Which interpolator was used at each model grid point

Example: A new METGRID.TBL entry

• By using wt average 4pt instead of average 4pt:

The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder

Outline

- The GEOGRID.TBL file
 - What is the GEOGRID.TBL file?
 - Ingesting new static fields
 - Examples: Using high-resolution land use and topography data
- The METGRID.TBL file
 - What is the METGRID.TBL file?
 - Example: Defining interpolation options for a new field
 - Example: Using the METGRID.TBL file for a real-time system
- Utility programs example: fixing "hot lakes"

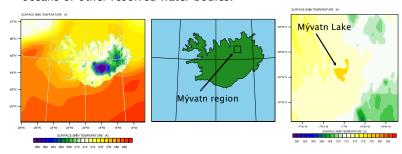
The WRF Users' Basic Tutorial 28 January – 1 February 2019, Boulder

37

Approach

In WRF v3.3 and later, let the *real* preprocessor know which water points are inland water bodies, and provide it a more accurate estimate of SST to be used only over these water bodies.

1) Identify inland water bodies in the land cover data set



- 1) Provide a suitable proxy for SST field over inland water bodies
 - E.g., Average surface air temperature for X days prior, 273 K for frozen lakes, etc.
- 2) Modify the SST field in the WRF input file
 - Use new capability in v3.3 real.exe program

Motivating Problem

The "Hot Lake" problem: Inland water bodies that are not resolved by SST data sets often receive extrapolated values from nearby oceans or other resolved water bodies.

Above left: Skin temperature field (TSK) for Iceland and surrounding ocean on 26 January 2011 1200 UTC from NCEP GFS and RTG SST data.

Above right: TSK in the Mývatn region. SST for Mývatn Lake is ~277 K!

The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder 38

Identifying Lakes

Some data sets already identify lakes with separate categories

MODIS, CORINE

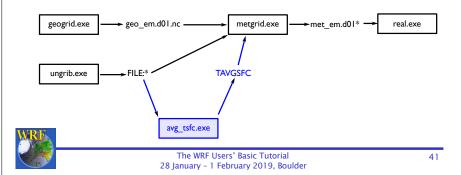
For others, we need a way to do this

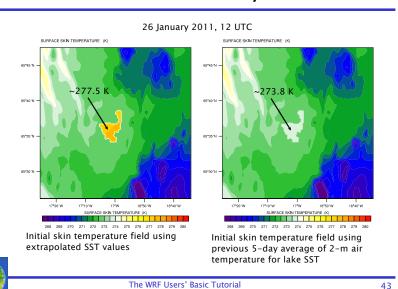
- Should be automated
 - don't want to spend long hours clicking on pixels for each data set
- Should be tunable
 - what constitutes a lake will naturally depend on what our SST data set is able to resolve
- Ideally, would not require auxiliary data

This is the default as of WPS v3.9

In namelist.wps, set:

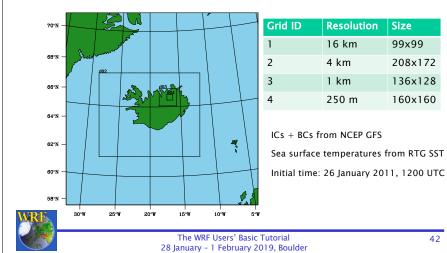
- geog_data_res = "usgs_lakes+default" for USGS land use (16=ocean, 28=lake)
- geog data res = "modis 30s lake+default" for MODIS land use


(17=ocean, 21=lake)

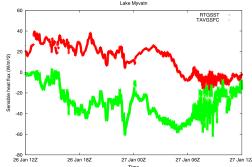

Creating a Proxy SST Field

The avg_tsfc.exe utility program may be used to compute the average 2-m air temperature field for any number of full diurnal cycles

- Number of cycles determined by available intermediate files and date range in namelist
- The resulting TAVGSFC intermediate file may be provided to the metgrid program



Test case: Lake Mývatn


Test case: Lake Mývatn

To confirm that everything is working as expected, try correcting the temperature for Lake Mývatn in the winter

Test case: Lake Mývatn

Time series of sensible heat flux in the center of the lake show a significant decrease when using a more realistic SST (TAVGSFC)

Latent heat flux time series from simulation using TAVGSFC for SST also shows a decrease from RTG SST time series as well

Summary

- In this lecture, we've seen
 - What the GEOGRID.TBL and METGRID.TBL files do
 - How to use new geographical data sources in the WPS
 - · High-resolution land use and topography data
 - How to use the METGRID.TBL file to correct interpolationrelated problems
 - How utility programs can be used to improve simulations
- For other features of the WPS, see Chapter 3 of the User's Guide
- For more information about using high-resolution topography data or urban land use data (over the U.S.), see

http://www2.mmm.ucar.edu/people/duda/files/how_to_hires.html

The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder 4

Bonus slides: A second METGRID.TBL example

Questions?

The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder

46

METGRID.TBL: Real-time System Example

- Suppose we have a real-time system that:
 - Uses GFS for initial and boundary conditions
 - When possible (i.e., if the files are available soon enough) uses soil moisture and soil temperature fields from AGRMET
- In our system, it may occasionally happen that the AGRMET files are not ready when we want to start our WRF run
 - Because system is real-time, we want to proceed using just the GFS land surface fields!

METGRID.TBL: Real-time System Example

• We already know how to run ungrib on multiple sources of data to get

GFS:YYYY-MM-DD_HH

and

AGRMET:YYYY-MM-DD_HH

intermediate files, and specify

fg_name = 'GFS', 'AGRMET',

in the &metgrid namelist record to use both
sources

See p. 3-24

The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder

49

51

METGRID.TBL: Real-time System Example

Without further changes, what happens if:

Only GFS data are available when we run metgrid

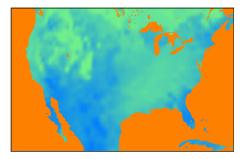
Metgrid runs and warns that no AGRMET data files were found:

Processing 2012-04-01_00

GFS

AGRMET

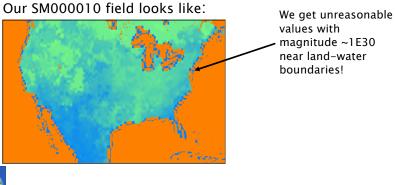
WARNING: Couldn't open file AGRMET:2012-04-01_00 for input.


Metgrid will finish, but will only use GFS data!

The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder 50

METGRID.TBL: Real-time System Example

And the 0–10 cm soil moisture field (SM000010) looks like:



The WRF Users' Basic Tutorial 28 January – 1 February 2019, Boulder

METGRID.TBL: Real-time System Example

However, what happens if:

Both GFS and AGRMET files are available when we run metgrid?

METGRID.TBL: Real-time System Example

Why are there bad values near coastlines? What went wrong?

In both Vtable.GFS and Vtable.AGRMET, the land-sea mask field is named LANDSEA

- In METGRID.TBL, our entry for SM000010 says:

name=SM000010

interp_option=sixteen_pt+four_pt+wt_average_4pt+search
masked=water

interp mask=LANDSEA(0)

fill_missing=1.

flag_in_output=FLAG_SM000010

The WRF Users' Basic Tutorial 28 January – 1 February 2019, Boulder

53

METGRID.TBL: Real-time System Example

When metgrid interpolated SM000010, it used the GFS landmask for a field masked by the AGRMET landmask!

Note the disagreement between the two data sources near coastlines.

The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder

METGRID.TBL: Real-time System Example

name=SM000010

interp_option=sixteen_pt+four_pt+wt_average_4pt+search
masked=water

interp mask=LANDSEA(0)

 ${\tt fill_missing=1.}$

flag in output=FLAG SM000010

After metgrid reads in LANDSEA from GFS file to use as an interpolation mask, it ignored the LANDSEA field from AGRMET for use as a mask.

- So, metgrid used the GFS LANDSEA mask even when interpolating AGRMET data!

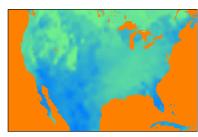
The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder

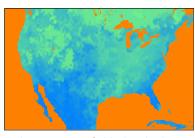
5

METGRID.TBL: Real-time System Example

Solution:

- Rename LANDSEA to AGR_LAND in Vtable.AGRMET
- Rename LANDSEA to GFS_LAND in Vtable.GFS
- Create separate entries in METGRID.TBL
 one for GFS SM000010 field
 another for AGRMET SM000010 field


METGRID.TBL: Real-time System Example


The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder

METGRID.TBL: Real-time System Example

With modified Vtables and METGRID.TBL:

The SM000010 field when only GFS files are available

The SM000010 field when both GFS and AGRMET files are available

57

The WRF Users' Basic Tutorial 28 January - 1 February 2019, Boulder