
WRF Software:
Code and Parallel Computing

John Michalakes, WRF Software Architect

Dave Gill

Outline

• WRF architecture – driver, mediation, model

• Need and design for parallelism

• Communication patterns to support parallelism

• Directory structure and file location overview

• Model layer interface

– The “grid” struct
– Indices
– Dereferencing

• I/O

Introduction – WRF Software Characteristics

• Developed from scratch beginning around 1998, primarily Fortran

and C

• Requirements emphasize flexibility over a range of platforms,

applications, users, performance

• WRF develops rapidly. First released Dec 2000

• Supported by flexible efficient architecture and implementation called

the WRF Software Framework

Introduction - WRF Software Framework Overview

• Implementation of WRF Architecture

– Hierarchical organization

– Multiple dynamical cores

– Plug compatible physics

– Abstract interfaces (APIs) to external packages

– Performance-portable

• Designed from beginning to be adaptable to

today�s computing environment for NWP

http://mmm.ucar.edu/wrf/WG2/bench/

ARW solver

Physics Interfaces

Plug-compatible physics
Plug-compatible physics

Plug-compatible physics
Plug-compatible physics

Plug-compatible physics

NMM solver

Top-level Control,
Memory Management, Nesting,

Parallelism, External APIs

m
ed

ia
tio

n
dr

iv
er

m
od

el

WRF Software Architecture

• Hierarchical software architecture

– Insulate scientists' code from parallelism and other
architecture/implementation-specific details

– Well-defined interfaces between layers, and external packages for
communications, I/O, and model coupling facilitates code reuse and
exploiting of community infrastructure, e.g. ESMF.

Registry

WRF Software Architecture

• Driver Layer
– Domains: Allocates, stores, decomposes, represents abstractly as single

data objects
– Time loop: top level, algorithms for integration over nest hierarchy

Registry

WRF Software Architecture

• Mediation Layer
– Solve routine, takes a domain object and advances it one time step
– Nest forcing, interpolation, and feedback routines

Registry

WRF Software Architecture

• Mediation Layer
– The sequence of calls for doing a time-step for one domain is known

in Solve routine
– Dereferences fields in calls to physics drivers and dynamics code
– Calls to message-passing are contained here as part of Solve routine

Registry

WRF Software Architecture

• Model Layer
– Physics and Dynamics: contains the actual WRF model routines are

written to perform some computation over an arbitrarily
sized/shaped, 3d, rectangular subdomain

Registry

Call Structure Superimposed on Architecture

wrf (main/wrf.F)

integrate (frame)

KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
KFCPS (phys/module_ra_kf.F
G3 (phys/module_cu_g3.F

solve_interface -> solve_em (dyn_em)

module_cumulus_driver (phys)

module_first_rk_step_part1 (dyn_em)

Hardware: The Computer

• The �N� in NWP

• Components

– Processor

• A program counter

• Arithmetic unit(s)
• Some scratch space (registers)

• Circuitry to store/retrieve from memory device

• Cache

– Memory

– Secondary storage
– Peripherals

• The implementation has been continually refined, but the basic idea hasn�t

changed much

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Hardware has not changed much…

~50,000 flop/s
48hr 12km WRF CONUS in 600 years

~5,000,000,000 flop/s
48 12km WRF CONUS in 26 Hours

6-way superscalar

36-bit floating point precision

~144 Kbytes

A computer in 1960

IBM 7090

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Dual core, 2.3 GHz chip

16 Flops/clock

64-bit floating point precision

20 MB L3

A computer in 2017

…how we use it has

• Fundamentally, processors haven’t changed much since 1960

• Quantitatively, they haven’t improved nearly enough

– 100,000x increase in peak speed
– 100,000x increase in memory size

• We make up the difference with parallelism

– Ganging multiple processors together to achieve 1011-12 flop/second
– Aggregate available memories of 1011-12 bytes

~1,000,000,000,000 flop/s ~2500 procs
48-h,12-km WRF CONUS in under 15 minutes

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

WRF Domain Decomposition

• The WRF model decomposes domains horizontally

• For n MPI tasks, the two nearest factors (n= k * m)are selected;

the larger is used to decompose the y-direction, the smaller is used

to decomposed the x-direction

January 2000 Benchmark – 1 task: 74x61

January 2000 Benchmark – 2 tasks: 74x31 January 2000 Benchmark – 4 tasks: 37x31

January 2000 Benchmark – 64 tasks: 10x8 WRF Domain Decomposition

• Users may choose a preferred decomposition (nproc_x, nproc_y)

&domains

nproc_x = 7

nproc_y = 10

January 2000 Benchmark – 70 tasks WRF Domain Decomposition

• Users may choose a preferred decomposition (nproc_x, nproc_y)

&domains

nproc_x = 7

nproc_y = 10

• Prime numbers and composites with large prime factors are usually

to be avoided

• The behavior of 70 vs 71 is quite different

January 2000 Benchmark – 71 tasks WRF Domain Decomposition

• As you increase the number of total MPI tasks, you reduce the

amount of work inside of each MPI task

• The amount of time to process communication between MPI tasks

tends to be at best constant

• As more MPI tasks are involved, more contention for hardware

resources due to communication is likely increase

• As the computation time gets smaller compared to the

communications time, parallel efficiency suffers

January 2000 Benchmark

• 74x61 grid cells, 24 hour forecast, 3 minute time step

• IO excluded

• Timing partitioned

– Local DAY Radiation step (17 time periods)
– Local NIGHT Radiation step (24 time periods)
– Not a Radiation step (432 time periods)

Decomposed domain sizes proc count: I-dim x J-dim

1: 74x61 2: 74x31 4: 37x31 8: 37x16 16: 19x16

January 2000 Benchmark

January 2000 Benchmark

Core Count SM
Efficiency

DM
Efficiency

1 74x61 100 100

2 74x31 97 100

4 37x31 93 97

8 37x16 91 96

16 19x16 65 85

Core Count SM
Efficiency

DM
Efficiency

1 74x61 100 100

2 74x31 97 100

4 37x31 93 95

8 37x16 88 92

16 19x16 59 83

Core Count SM
Efficiency

DM
Efficiency

1 74x61 100 100

2 74x31 94 97

4 37x31 84 80

8 37x16 68 71

16 19x16 43 52

Radiation Day Radiation Night Not Radiation Timestep

Avg 5.76 s Avg 2.16 s Avg 0.39 s

Std 0.019 s Std 0.005 s Std 0.012 s

n = 17 n = 24 n = 432

January 2000 Benchmark

• WRF timing estimates may be obtained from the model print-out

Serial – 1 core, Day radiation step
Timing for main on domain 1: 5.77810 elapsed seconds

OpenMP – 8 cores, Day radiation step
Timing for main on domain 1: 0.83044 elapsed seconds

MPI – 16 cores, Day radiation step
Timing for main on domain 1: 0.39633 elapsed seconds

• Get enough time steps to include “day-time” radiation, and to have the

microphysics “active” for better estimates

Application: WRF

• WRF can be run serially or as a parallel job

• WRF uses domain decomposition to divide total amount of

work over parallel processes

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Model domains are decomposed for parallelism on two-levels
Patch: section of model domain allocated to a distributed memory
node, this is the scope of a mediation layer solver or physics driver.

Tile: section of a patch allocated to a shared-memory processor within a
node; this is also the scope of a model layer subroutine.

Distributed memory parallelism is over patches; shared memory
parallelism is over tiles within patches

• Single version of code for efficient execution on:

– Distributed-memory

– Shared-memory (SMP)
– Clusters of SMPs
– Vector and microprocessors

Parallelism in WRF: Multi-level Decomposition

Logical
domain

1 Patch, divided
into multiple tiles

Inter-processor
communication

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Distributed Memory Communications

Communication is required between patches when a
horizontal index is incremented or decremented on the right-
hand-side of an assignment.

On a patch boundary, the index may refer to a value that is
on a different patch.

Following is an example code fragment that requires
communication between patches

Note the tell-tale +1 and –1 expressions in indices for rr, H1,
and H2 arrays on right-hand side of assignment.

These are horizontal data dependencies because the
indexed operands may lie in the patch of a neighboring
processor. That neighbor�s updates to that element of the
array won�t be seen on this processor.

When
Needed?

Why?

Signs in
code

(module_diffusion.F)

SUBROUTINE horizontal_diffusion_s (tendency, rr, var, . . .
. . .

DO j = jts,jte
DO k = kts,ktf
DO i = its,ite

mrdx=msft(i,j)*rdx
mrdy=msft(i,j)*rdy
tendency(i,k,j)=tendency(i,k,j)- &

(mrdx*0.5*((rr(i+1,k,j)+rr(i,k,j))*H1(i+1,k,j)- &
(rr(i-1,k,j)+rr(i,k,j))*H1(i ,k,j))+ &

mrdy*0.5*((rr(i,k,j+1)+rr(i,k,j))*H2(i,k,j+1)- &
(rr(i,k,j-1)+rr(i,k,j))*H2(i,k,j))- &

msft(i,j)*(H1avg(i,k+1,j)-H1avg(i,k,j)+ &
H2avg(i,k+1,j)-H2avg(i,k,j) &

)/dzetaw(k) &
)

ENDDO
ENDDO
ENDDO

. . .

Distributed Memory Communications

• Halo updates

Distributed Memory MPI
Communications

memory on one processor memory on neighboring processor

*
+ *
*

* *

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

• Halo updates
• Periodic boundary updates
• Parallel transposes
• Nesting scatters/gathers

Distributed Memory (MPI)
Communications

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

Distributed Memory (MPI)
Communications

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

• Halo updates
• Periodic boundary updates
• Parallel transposes
• Nesting scatters/gathers

• Halo updates
• Periodic boundary updates
• Parallel transposes
• Nesting scatters/gathers

Distributed Memory (MPI)
Communications

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

all y on
patch

all z on
patch

all x on
patch

• Halo updates
• Periodic boundary updates
• Parallel transposes
• Nesting scatters/gathers

Distributed Memory (MPI)
Communications

Computing Overview

APPLICATION

HARDWARE

SYSTEM

Processors
Nodes
Networks

Processes
Threads
Messages

Patches
Tiles
WRF Comms

NEST:2.22 km INTERMEDIATE: 6.66 km

COARSE
Ross Island
6.66 km

WRF Model
Top-Level
Directory
Structure

WRF Design
and
Implementation
Doc, p 5

DRIVER
MEDIATION
MODEL

Makefile
README
README_test_cases
clean
compile
configure
Registry/
arch/
dyn_em/
dyn_nnm/
external/
frame/
inc/
main/
phys/
share/
tools/
run/
test/

build
scripts

source
code
directories

execution
directories

machine build rules
CASE input files

Where are WRF source code files located?

$(RM) $@

$(CPP) -I$(WRF_SRC_ROOT_DIR)/inc \

$(CPPFLAGS) $(OMPCPP) $*.F > $*.f90

$(FC) -o $@ -c $(FCFLAGS) $(MODULE_DIRS) \

$(PROMOTION) $(FCSUFFIX) $*.f90

Where are WRF source code files located?

cpp –C –P file.F > file.f90
gfortran –c file.f90

Where are WRF source code files located?

• The most important command is the �find� command. If there is an error in the

model output, you can find that location in the source code with the find
command.

cd WRFV3

find . –name *.F –exec grep -i �Flerchinger� {} \; -print

Where are WRF source code files located?

• All of the differences between the .F and .f90 files are due to the included pieces

that are manufactured by the Registry.

• These additional pieces are all located in the WRFV3/inc directory.

• For a serial build, almost 450 files are manufactured.

• Usually, most developers spend their time working with physics schemes.

Where are WRF source code files located?

• The �main� routine that handles the calls to all of the physics and dynamics:

– WRFV3/dyn_em/solve_em.F

• This �solver� is where the tendencies are initialized to zero, some pre-physics

terms are computed, and the time stepping occurs

• The calls to most of the physics schemes are made from a further call down the

call tree

– dyn_em/module_first_rk_step_part1.F

Where are WRF source code files located?

• Inside of solve_em and first_rk_step_part1, all of the data is located in the

�grid� structure: grid%ht.

• The dimensions in solve_em and first_rk_step_part1 are �d� (domain), and

�m� (memory):

ids, ide, jds, jde, kds, kde

ims, ime, jms, jme, kms, kme

• The �t� (tile) dimensions are computed in first_rk_step_part1 and passed to

all drivers.

• WRF uses global indexing

Where are WRF source code files located?

• If you are interested in looking at physics, the WRF system has organized the

files in the WRFV3/phys directory.

• In WRFV3/phys, each type of physics has a driver:

module_cumulus_driver.F cu

module_microphysics_driver.F mp
module_pbl_driver.F bl
module_radiation_driver.F ra
module_surface_driver.F sf

Where are WRF source code files located?

• The subgrid-scale precipitation (*_cu_*.F)

module_cu_bmj.F module_cu_camzm.F

module_cu_g3.F module_cu_gd.F
module_cu_kf.F module_cu_kfeta.F
module_cu_nsas.F module_cu_osas.F
module_cu_sas.F module_cu_tiedtke.F

Where are WRF source code files located?

• Advection

WRFV3/dyn_em/module_advect_em.F

• Lateral boundary conditions

WRFV3/dyn_em/module_bc_em.F

Where are WRF source code files located?

• Compute various RHS terms, pressure gradient, buoyancy, w damping,

horizontal and vertical diffusion, Coriolis, curvature, Rayleigh damping

WRFV3/dyn_em/module_big_step_utilities_em.F

• All of the sound step utilities to advance u, v, mu, t, w within the small time-
step loop

WRFV3/dyn_em/module_small_step_em.F

WRF Model Layer Interface – The Contract with Users

OMP
Config
Inquiry I/O API

Config
Module

WRF Tile-callable
Subroutines

Solve DM comm

Th
re

ad
s

Data formats,
Parallel I/O

M
es

sa
ge

Pa
ss

in
g

Driver

All state arrays passed through argument list
as simple (not derived) data types

Domain, memory, and run dimensions passed
unambiguously in three dimensions

Model layer routines are called from mediation
layer (physics drivers) in loops over tiles,
which are multi-threaded

WRF Model Layer Interface – The Contract with Users

OMP
Config
Inquiry I/O API

Config
Module

WRF Tile-callable
Subroutines

Solve DM comm

Th
re

ad
s

Data formats,
Parallel I/O

M
es

sa
ge

Pa
ss

in
g

Driver

Restrictions on Model Layer subroutines:

No I/O, communication

No stops or aborts
Use wrf_error_fatal

No common/module storage of
decomposed data

Spatial scope of a Model Layer call is
one �tile�

SUBROUTINE driver_for_some_physics_suite (
. . .

!$OMP DO PARALLEL
DO ij = 1, numtiles

its = i_start(ij) ; ite = i_end(ij)
jts = j_start(ij) ; jte = j_end(ij)
CALL model_subroutine(arg1, arg2, . . .

ids , ide , jds , jde , kds , kde ,
ims , ime , jms , jme , kms , kme ,
its , ite , jts , jte , kts , kte)

END DO
. . .

END SUBROUTINE

WRF Model Layer Interface

template for model layer subroutine

SUBROUTINE model_subroutine (&
arg1, arg2, arg3, … , argn, &
ids, ide, jds, jde, kds, kde, & ! Domain dims
ims, ime, jms, jme, kms, kme, & ! Memory dims
its, ite, jts, jte, kts, kte) ! Tile dims

IMPLICIT NONE

! Define Arguments (State and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . .
. . .

! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .

WRF Model Layer Interface

template for model layer subroutine

. . .
! Executable code; loops run over tile
! dimensions
DO j = jts, MIN(jte,jde-1)

DO k = kts, kte
DO i = its, MIN(ite,ide-1)

loc1(i,k,j) = arg1(i,k,j) + …
END DO

END DO
END DO

WRF Model Layer Interface
template for model layer subroutine

SUBROUTINE model (&
arg1, arg2, arg3, … , argn, &
ids, ide, jds, jde, kds, kde, & ! Domain dims
ims, ime, jms, jme, kms, kme, & ! Memory dims
its, ite, jts, jte, kts, kte) ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . .
. . .
! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .
! Executable code; loops run over tile
! dimensions
DO j = MAX(jts,jds), MIN(jte,jde-1)
DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide-1)
loc1(i,k,j) = arg1(i,k,j) + …

END DO
END DO

END DO

• Domain dimensions
• Size of logical domain
• Used for bdy tests, etc.

template for model layer subroutine

SUBROUTINE model (&
arg1, arg2, arg3, … , argn, &
ids, ide, jds, jde, kds, kde, & ! Domain dims
ims, ime, jms, jme, kms, kme, & ! Memory dims
its, ite, jts, jte, kts, kte) ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . .
. . .
! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .
! Executable code; loops run over tile
! dimensions
DO j = MAX(jts,jds), MIN(jte,jde-1)
DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide-1)
loc1(i,k,j) = arg1(i,k,j) + …

END DO
END DO

END DO

• Domain dimensions
• Size of logical domain
• Used for bdy tests, etc.

• Memory dimensions
• Used to dimension dummy

arguments
• Do not use for local arrays

template for model layer subroutine

SUBROUTINE model (&
arg1, arg2, arg3, … , argn, &
ids, ide, jds, jde, kds, kde, & ! Domain dims
ims, ime, jms, jme, kms, kme, & ! Memory dims
its, ite, jts, jte, kts, kte) ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . .
. . .
! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .
! Executable code; loops run over tile
! dimensions
DO j = MAX(jts,jds), MIN(jte,jde-1)
DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide-1)
loc1(i,k,j) = arg1(i,k,j) + …

END DO
END DO

END DO

• Domain dimensions
• Size of logical domain
• Used for bdy tests, etc.

• Memory dimensions
• Used to dimension dummy

arguments
• Do not use for local arrays

• Tile dimensions
• Local loop ranges
• Local array dimensions

template for model layer subroutine

SUBROUTINE model (&
arg1, arg2, arg3, … , argn, &
ids, ide, jds, jde, kds, kde, & ! Domain dims
ims, ime, jms, jme, kms, kme, & ! Memory dims
its, ite, jts, jte, kts, kte) ! Tile dims

IMPLICIT NONE

! Define Arguments (S and I1) data
REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . .
REAL, DIMENSION (ims:ime,jms:jme) :: arg7, . . .
. . .
! Define Local Data (I2)
REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . .
. . .
! Executable code; loops run over tile
! dimensions
DO j = MAX(jt,jds), MIN(jte,jde-1)
DO k = kts, kte
DO i = MAX(its,ids), MIN(ite,ide-1)
loc1(i,k,j) = arg1(i,k,j) + …

END DO
END DO

END DO

• Domain dimensions
• Size of logical domain
• Used for bdy tests, etc.

• Memory dimensions
• Used to dimension dummy

arguments
• Do not use for local arrays

• Tile dimensions
• Local loop ranges
• Local array dimensions

• Patch dimensions
• Start and end indices of local

distributed memory subdomain
• Available from mediation layer

(solve) and driver layer; not usually
needed or used at model layer

WRF I/O

• Streams (similar to Fortran units): pathways into and out of model

• Can be thought of as files, though that is a restriction
– History + auxiliary output streams (10 and 11 are reserved for

nudging)
– Input + auxiliary input streams (10 and 11 are reserved for

nudging)
– Restart, boundary, and a special DA in-out stream
– Currently, 24 total streams
– Use the large values and work down to stay away from �used�
– Non-chemistry: use history streams 13-22, 24
– Chemistry: use history streams 20, 21, 22, 24

WRF I/O

• Attributes of streams
– Variable set

• The set of WRF state variables that comprise one read or write on a stream
• Defined for a stream at compile time in Registry

– Format
• The format of the data outside the program (e.g. NetCDF), split
• Specified for a stream at run time in the namelist

WRF I/O

• Attributes of streams
– Additional namelist-controlled attributes of streams

• Dataset name
• Time interval between I/O operations on stream
• Starting, ending times for I/O (specified as intervals from start of run)

WRF I/O

• Attributes of streams
– Mandatory for stream to be used:

• Time interval between I/O operations on stream
• Format: io_form

Outline

• WRF architecture – driver, mediation, model

• Need and design for parallelism

• Communication patterns to support

parallelism

• Directory structure and file location overview

• Model layer interface

– The “grid” struct
– Indices
– Dereferencing

• I/O

Outline

• WRF architecture – driver, mediation, model

• Need and design for parallelism

• Communication patterns to support

parallelism

• Directory structure and file location overview

• Model layer interface

– The “grid” struct
– Indices
– Dereferencing

• I/O

Hierarchy

Driver
allocation, time loop

Mediation
steps for 1 time loop
call physics
call dynamics
handle nesting

Model
create new values
tendency terms

Outline

• WRF architecture – driver, mediation, model

• Need and design for parallelism

• Communication patterns to support

parallelism

• Directory structure and file location overview

• Model layer interface

– The “grid” struct
– Indices
– Dereferencing

• I/O

Even relatively small domains
benefit from parallelism

Two types:
DM – MPI, patches
SM – OpenMP, tiles

Outline

• WRF architecture – driver, mediation, model

• Need and design for parallelism

• Communication patterns to support

parallelism

• Directory structure and file location overview

• Model layer interface

– The “grid” struct
– Indices
– Dereferencing

• I/O

HALO – nearest neighbor

PERIOD – supporting periodic
lateral boundaries

XPOSE – transpose (usually for
FFTs)

NEST – intermediate domain

Outline

• WRF architecture – driver, mediation, model

• Need and design for parallelism

• Communication patterns to support

parallelism

• Directory structure and file location overview

• Model layer interface

– The “grid” struct
– Indices
– Dereferencing

• I/O

Most developers:
dyn_em
phys

Source is *.F

Post-cpp is *.f90

Physics schemes are a single
module

Updates to dependency files for
make

Outline

• WRF architecture – driver, mediation, model

• Need and design for parallelism

• Communication patterns to support

parallelism

• Directory structure and file location overview

• Model layer interface

– The “grid” struct
– Indices
– Dereferencing

• I/O

The contract with developers
concerning the model layer
interface is important.

Adherence:
parallelism
I/O
initialization

Outline

• WRF architecture – driver, mediation, model

• Need and design for parallelism

• Communication patterns to support

parallelism

• Directory structure and file location overview

• Model layer interface

– The “grid” struct
– Indices
– Dereferencing

• I/O

Use history stream numbers
from 13 to 22, 24

Chemistry 20, 21, 22, 24

Always put in an io_form and an
interval in the namelist.input file
for each stream

