Idealized Cases: Introduction

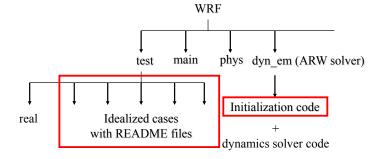
Initialization for Idealized Cases

Why do we provide idealized cases?

1. The cases provide simple tests of the dynamics solver for a broad range of space and time scale:

LES - Δx meters, Δt < second;

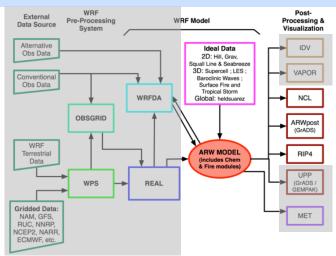
Baroclinic waves - Δx 100 km, Δt = 10 minutes.


- 2. The test cases reproduce known solutions (analytic, converged, or otherwise).
- 3. The cases provide a starting point for other idealized experiments.
- 4. They can be used to test physics development.
- 5. These tests are the easiest way to test the solver.

WRF Tutorial January 2019

Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: Introduction


WRF ARW code

WRF Tutorial January 2019

Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: Introduction

WRF ARW Tech Note

A Description of the Advanced Research WRF Version 3 (V4 technote coming soon) http://www.mmm.ucar.edu/wrf/users/pub-doc.html

WRF Tutorial January 2019

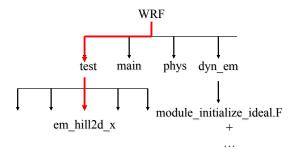
Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: Introduction

Idealized Test Cases for the WRF ARW Model V4

- 2D flow over a bell-shaped mountain WRF/test/em hill2d x
- 2D squall line (x, z; y, z) WRF/test/em squall2d x, em squall2d y
- 2D gravity current WRF/test/em grav2d x
- 2D sea-breeze case WRF/test/em seabreeze2d x
- 3D large-eddy simulation case WRF/test/em les
- 3D quarter-circle shear supercell thunderstorm WRF/test/em quarter ss
- 3D tropical cyclone WRF/test/em tropical cyclone
- 3D baroclinic wave in a channel WRF/test/em b wave
- 3D global: Held-Suarez case WRF/test/em heldsuarez
- 1D single column test configuration WRF/test/em scm xy
- 3D fire model test cases WRF/test/em fire
- 3D convective radiative equilibrium test WRF/test/em convrad

WRF Tutorial January 2019

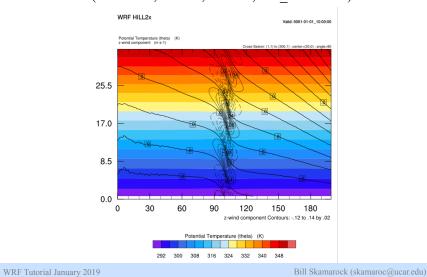

Idealized Cases: 2d flow over a bell-shaped mountain

Running a test case: *em hill2d x* example

2D Flow Over a Bell-Shaped Mountain

Initialization module: dyn_em/module_initialize_ideal.F

Case directory: test/em_hill2d_x



WRF Tutorial January 2019

Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: 2d flow over a bell-shaped mountain

(dx = 2km, dt=20s, T=10 h, wrf Hill2d.ncl)

Idealized Cases: 2d flow over a bell-shaped mountain

From the WRF main directory:

- > configure (choose *serial* build, *no nesting* option)
- > compile em hill2d x

Move to the test directory:

- > cd test/em hill2d x
- > ideal.exe (this produces the ARW initial conditions)
- > wrf.exe (executes ARW)

Finish by plotting output using scripts downloaded from the ARW website (wrf Hill2d.ncl)

WRF Tutorial January 2019

Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: 2d flow over a bell-shaped mountain

What happens during the initialization

Initialization code: WRF/dyn em/module initialize ideal.F

- Idealize test specifics are enabled in the code using the Fortran CASE construct.
 SELECT CASE (model_config_rec%ideal_case)
 - CASE (hill2d_x)
- Model levels are set within the initialization to produce a stretched η coordinate (close to equally spaced z), or equally spaced η coordinate.
- · Terrain is set in the initialization code
- A single sounding (z, θ, Q_v, u and v) is read in from WRF/test/em hill2d x/input sounding
- Sounding is interpolated to the ARW grid, equation of state and hydrostatic balance used to compute the full thermodynamics state.
- Wind fields are interplolated to model η levels.

3D meshes are always used, even in 2D (x,z; y,z) cases. The third dimension contains only 5 planes, the boundary conditions in that dimension are periodic, and the solutions on the planes are identical in the initial state and remain so during the integration.

WRF Tutorial January 2019

Idealized Cases: 2d flow over a bell-shaped mountain

Setting the terrain heights

In WRF/dyn em/module initialize ideal.F

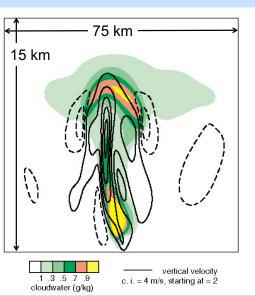
grid%ph0(i,1,j) = grid%phb(i,1,j)

```
SUBROUTINE init domain rk ( grid, &
          CASE (hill2d x)
                                  mountain height and half-width
             hm = 100.
                                    mountain position in domain
             icm = ide/2 \leftarrow
                                    (center gridpoint in x)
          CASE (hill2d x)
            DO j=jts,jte
Set height DO i=its,ite
             \rightarrow grid%ht(i,j) = hm/(1.+(float(i-icm)/xa)**2)
              grid%phb(i,1,j) = g*grid%ht(i,j)
              grid\$php(i,1,j) = 0. — lower boundary condition
```

WRF Tutorial January 2019

WRF Tutorial January 2019

field


Bill Skamarock (skamaroc@ucar.edu)

Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: 2d squall line

ENDDO ENDDO

Squall-line simulation T = 3600 s $\Delta x = \Delta z = 250$ meters $\upsilon = 300 \text{ m}^2/\text{s}$

Idealized Cases: 2d flow over a bell-shaped mountain

Sounding File Format

File: WRF/test/em quarter ss/input sounding

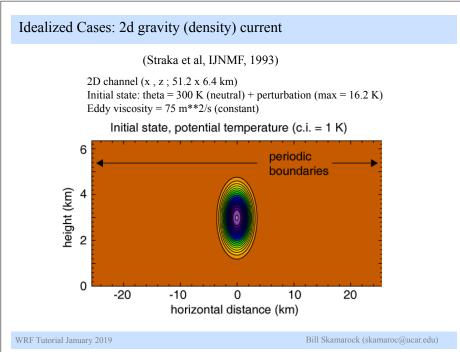
		surface			
	surface	potential	surface vapor		
	Pressure	Temperature	mixing ratio		
	(mb)	(K)	(g/kg)		
line 1 →	1000.00	300.00	14.00		
each successive line is a point in the	250.00	300.45	14.00	-7.88	-3.58
	750.00	301.25	14.00	-6.94	-0.89
	1250.00	302.47	13.50	-5.17	1.33
	1750.00	303.93	11.10	-2.76	2.84
	2250.00	305.31	9.06	0.01	3.47
	2750.00	306.81	7.36	2.87	3.49
sounding	3250.00	308.46	5.95	5.73	3.49
	3750.00	310.03	4.78	8.58	3.49
	4250.00	311.74	3.82	11.44	3.49
	4750.00	313.48	3.01	14.30	3.49
	height (m)	potential	vapor	U	V
	0 ()	temperature	mixing	(west-east)	(south-north)
		(K)	ratio (g/kg)	velocity	velocity
		. ,	(0 0)	(m/s)	(m/s)

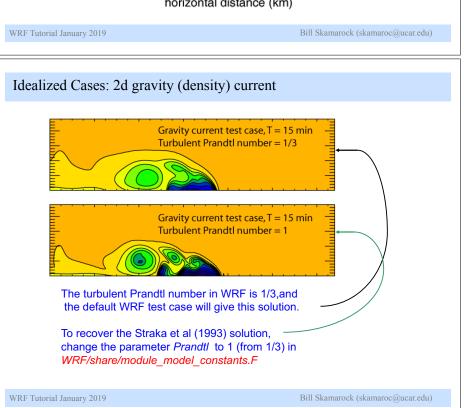
WRF Tutorial January 2019

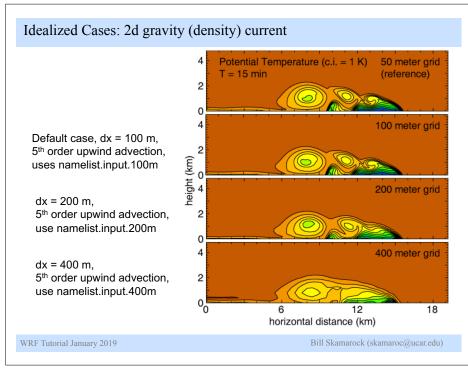
Bill Skamarock (skamaroc@ucar.edu)

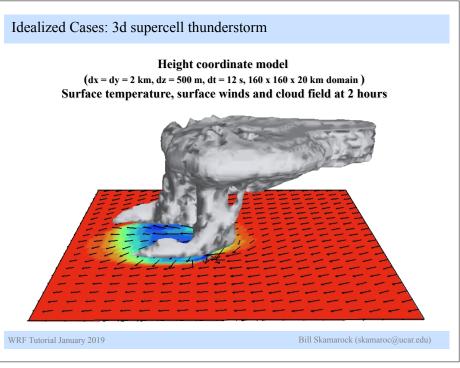
Idealized Cases: 2d squall line

 $squall2d_x$ is (x,z), $squall2d_y$ is (y,z); both produce the same solution.


Initialization code is in


WRFV3/dyn em/module initialize ideal.F This code also introduces the initial perturbation.


The thermodynamic soundings and hodographs are in the ascii input files


WRFV3/test/em squall2d x/input sounding WRFV3/test/em squall2d y/input sounding

WRF Tutorial January 2019

Idealized Cases: 3d Large Eddy Simulation (LES)

Initialization code is in

WRF/dyn em/module initialize ideal.F

Test case directory is in

WRF/test/em les

The default case is a large-eddy simulation of free convective boundary layer with no winds. The turbulence of the free CBL is driven and maintained by namelist-specified surface heat flux.

An initial sounding with mean winds is also provided.

Reference: Moeng et al. 2007 MWR

WRF Tutorial January 2019

Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: 3d tropical cyclone

Default vortex:

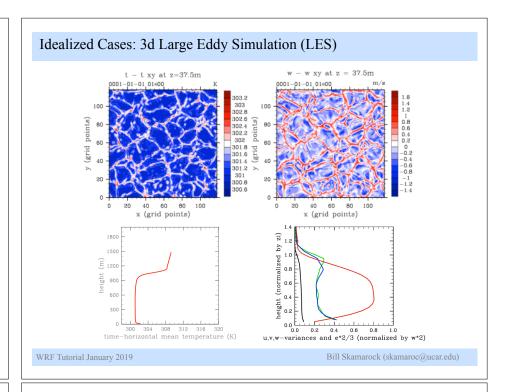
- weak (12.9 m/s) axisymmetric analytic vortex (Rotunno and Emanuel, 1987, JAS)
- placed in center of domain
- in "module_initialize_tropical_cyclone.F" users can modify initial size and intensity (see parameters r0, rmax, vmax, zdd)

Default environment:

- mean hurricane sounding from Jordan (1958, J. Meteor.)
- SST = 28 degrees C
- $f = 5e-5 s^{-1}$ (20 degrees North)

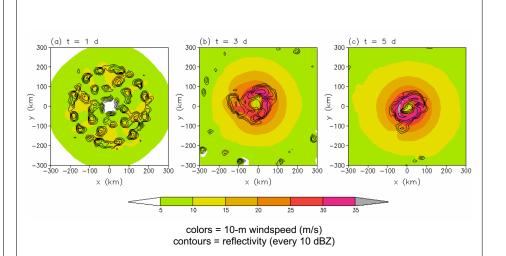
Default domain:

3000 km x 3000 km x 25 km domain

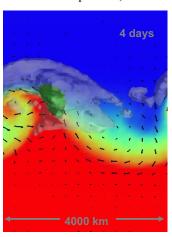

• default dx,dy is only 15 km: useful for quick tests of new code (i.e., new physics schemes); research-quality studies should use smaller dx,dy

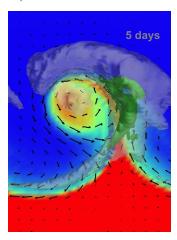
WRF Tutorial January 2019

Bill Skamarock (skamaroc@ucar.edu)


colors = relative humidity (%)

contours = azimuthal velocity (m/s)


Idealized Cases: 3d tropical cyclone


WRF Tutorial January 2019

Idealized Cases: baroclinic wave in a channel

Height coordinate model (dx = 100 km, dz = 250 m, dt = 600 s) Surface temperature, surface winds, cloud and rain water

WRF Tutorial January 2019

Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: baroclinic wave in a channel

Initialization code is in WRF/dyn_em/module_initialize_ideal.F

The initial jet (y,z) is read from the binary input file WRF/test/em b wave/input jet

The initial perturbation is hardwired in the initialization code.

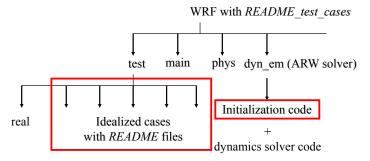
WRF Tutorial January 2019

Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: baroclinic wave in a channel

Default configuration in

WRF/test/em_b_wave/namelist.input runs the dry jet in a periodic channel with dimension (4000 x 8000 x 16 km) (x,y,z).


Turning on any microphysics (mp_physics > 0 in namelist.input) puts moisture into the model state.

The initial jet only works for dy = 100 km and 81 grid points in the y (south-north) direction.

Bill Skamarock (skamaroc@ucar.edu)

Idealized Cases: More information

Descriptions: WRF/README_test_cases WRF/test/em_*/README

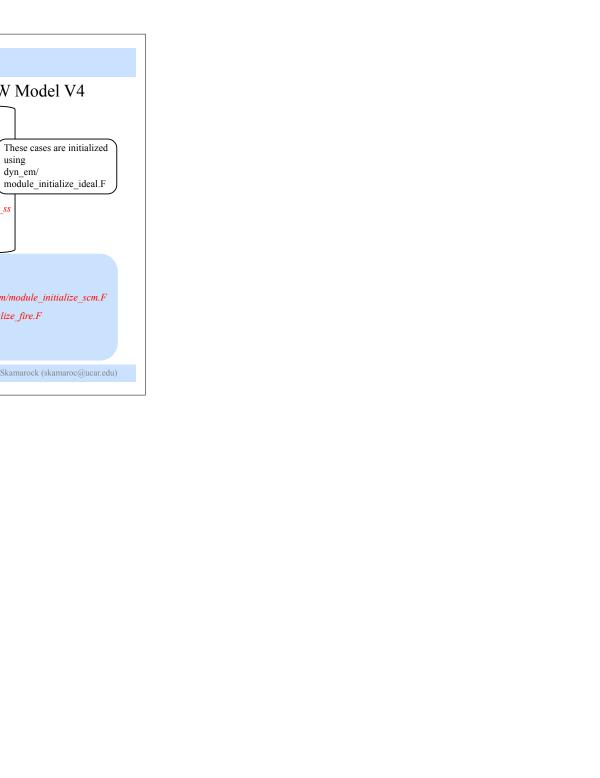
WRF Tutorial January 2019

Bill Skamarock (skamaroc@ucar.edu)

WRF Tutorial January 2019

Idealized Cases

Idealized Test Cases for the WRF ARW Model V4


- 2D flow over a bell-shaped mountain WRF/test/em hill2d x
- 2D squall line (x, z; y, z) WRF/test/em_squall2d_x, em_squall2d_y
- 2D gravity current WRF/test/em grav2d x
- 2D sea-breeze case WRF/test/em_seabreeze2d_x
- 3D large-eddy simulation case WRF/test/em_les
- 3D quarter-circle shear supercell thunderstorm WRF/test/em_quarter_ss
- 3D convective radiative equilibrium test WRF/test/em_convrad
- 3D baroclinic wave in a channel WRF/test/em b wave
- 3D global: Held-Suarez case WRF/test/em_heldsuarez and dyn_em/module_initialize_heldsuarez.F
- 1D single column test configuration WRF/test/em_scm_xy and dyn_em/module_initialize_scm.F
- 3D fire model test cases WRF/test/em_fire and dyn_em/module_initialize_fire.F
- 3D tropical cyclone WRF/test/em tropical cyclone and dyn em/module initialize tropical cyclone.F

WRF Tutorial January 2019

Bill Skamarock (skamaroc@ucar.edu)

using

dyn_em/

