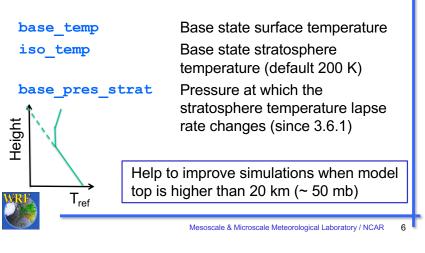


Vertical interpolation options (2)

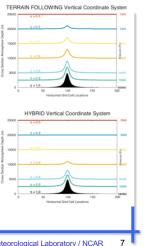
Program real only, & domains:


- use_levels_below_ground: whether to use data below the
 ground
- lowest_lev_from_sfc:logical, whether surface data is used to
 fill the lowest model level values
- force_sfc_in_vinterp: number of levels to use surface
 data, default is 1
- extrap_type: how to do extrapolation: 1 use 2 lowest levels; 2 - constant
- t_extrap_type : extrapolation option for temperature: 1 isothermal; 2 6.5 K/km; 3 adiabatic

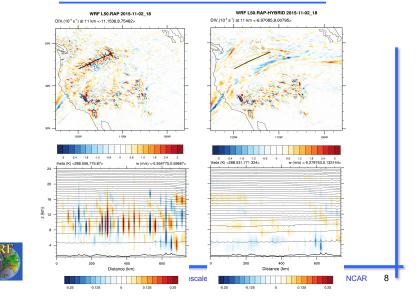
Look for these in examples.namelist

Base State Parameters

The following could be varied (program real, &dynamics):

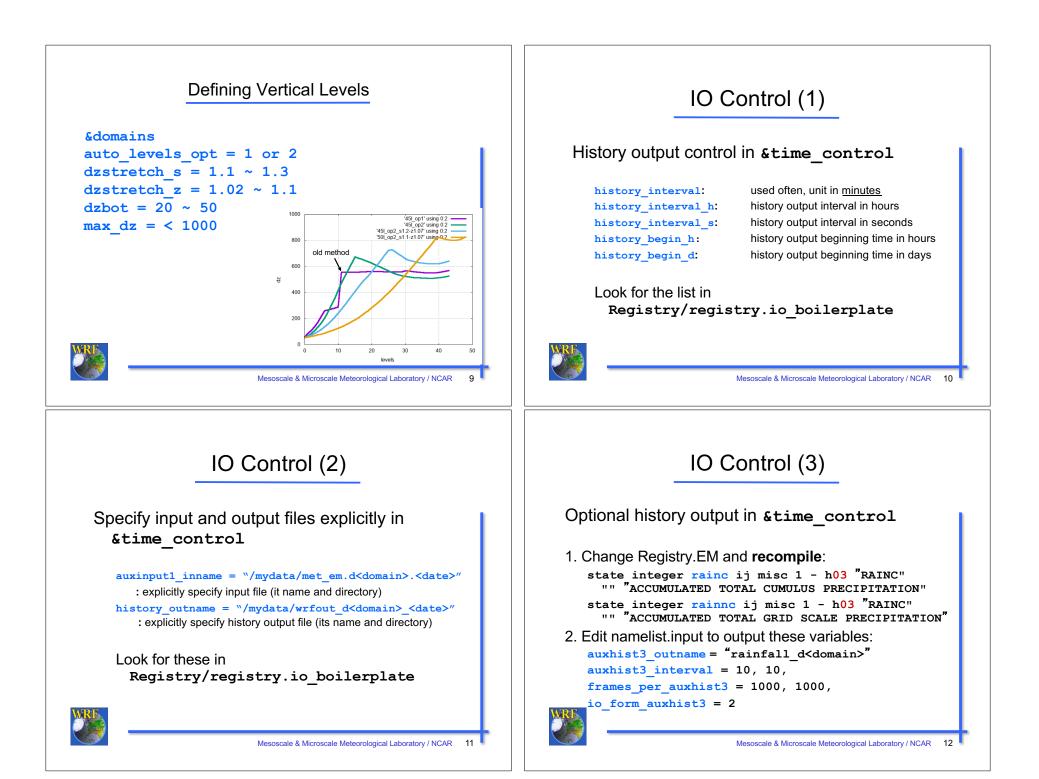


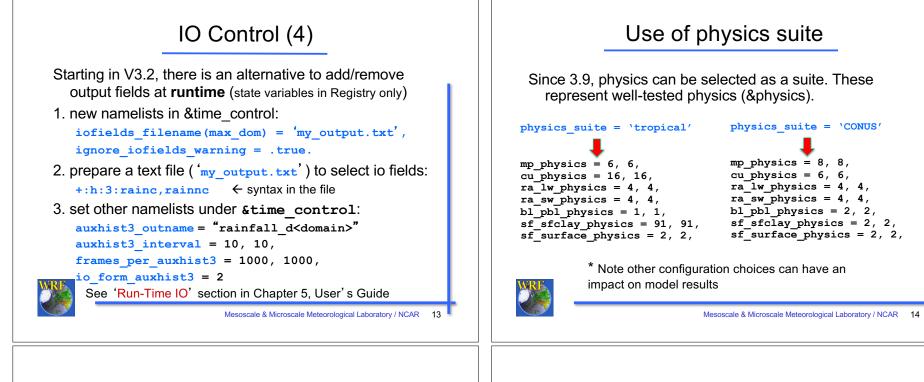
Hybrid Vertical Coordinate Option

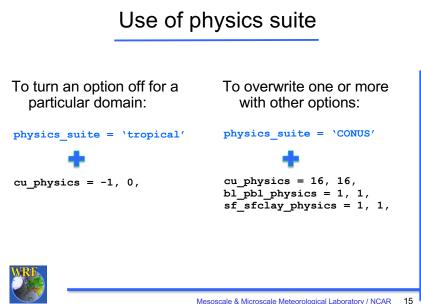

 Decision made when running program real.exe, by setting these namelists in &dynamics hybrid_opt = 2 (0 turns it off)

$$eta_c = 0.2$$
 (default)

- New since V3.9
- Default in V4.0



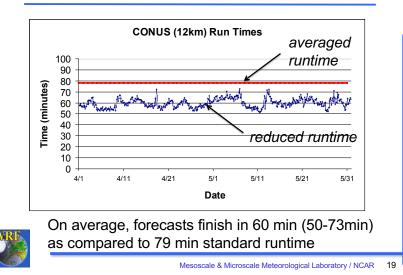

Hybrid Vertical Coordinate Options



Mesoscale & Microscale Meteorological Laboratory / NCAR 5

Options for long simulations (1)

Update control for lower boundary fields: allow SST, seaice, monthly vegetation fraction and albedo to be updated regularly during a model run: sst_update: 0 - no update 1 - update all above fields (in &physics) Set before running real.exe, and this will create additional output files: wrflowinp_d01, wrflowinp_d02, .. Other namelists required in &time_control: auxinput4_inname = "wrflowinp_d<domain>" auxinput4_interval = 360, 360, io_form_auxinput4 = 2 (netCDF)


See 'Using sst_update Option' in Chapter 5, User's Guide

Options for long simulations (2) (&physics)

	sst_skin	diurnal water temp update	
	tmn_update	deep soil temp update, used with lagday	
	lagday	averaging time in days	
	bucket_mm	bucket reset value for rainfall (e.g. rainc=i_rainc*bucket_mm+rainc)	
	bucket_j	bucket reset value for radiation fluxes	
RF	spec_exp	exponential multiplier for boundary zone ramping (set in <i>real, &bdy_control</i>). Usually used with wider boundary zone	
		Mesoscale & Microscale Meteorological Laboratory / NCAR	17

Adaptive time steps (2): an example

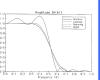
Adaptive time steps (1)

- Adaptive-time-step is a way to maximize the model time step while keeping the model numerically stable.
- Good to use for real-time run.
- May not work in combination with other options.

Also see 'Using Adaptive Time Stepping' section in Chapter 5, UG

WRF

Mesoscale & Microscale Meteorological Laboratory / NCAR 18

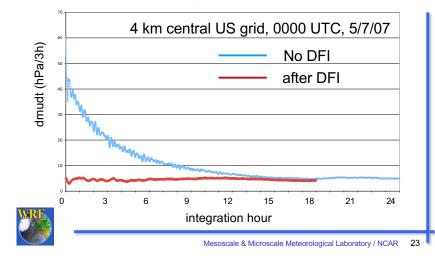

Adaptive time steps (3)

Namelist control: &domains USE WITH CARE				
<pre>use_adaptive_time_step</pre>	logical switch			
<pre>step_to_output_time</pre>	whether to write at exact history output times			
target_cfl	maximum cfl allowed (1.2)			
<pre>max_step_increase_pct</pre>	percentage of time step increase each time; set to 5, 51, 51 (larger value for nest)			
<pre>starting_time_step</pre>	in seconds; e.g. set to 4*DX			
<pre>max_time_step min_time_step</pre>	in seconds; e.g. set to 8*DX in seconds; e.g. set to 4*DX			

Mesoscale & Microscale Meteorological Laboratory / NCAR 20

Digital Filter Initialization (DFI) (1)

- DFI is a way to use a low-pass filter to improve model initial conditions
- Useful for short-range model runs (1-6 hours)
- Imbalances in model IC
 - May be introduced by interpolation, different topography, or by objective analysis, and data assimilation
 - May generate spurious gravity waves in the early simulation hours, which could cause erroneous precipitation, numerical instability and degrade subsequent data assimilation



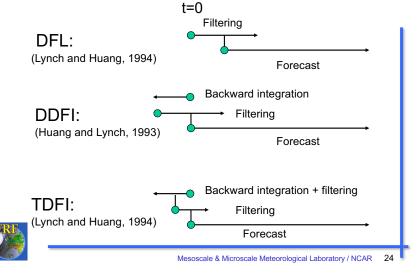
Mesoscale & Microscale Meteorological Laboratory / NCAR 21

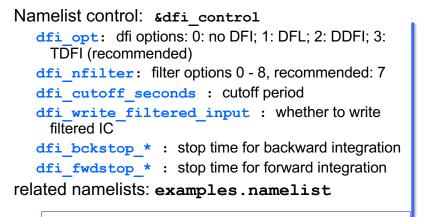
Digital filter initialization (3)

Use of DFI helps to damp high pressure tendencies in early forecast

Digital filter initialization (2)

Using DFI


- can construct consistent model fields which do not exist in the initial conditions, e.g. vertical motion, cloud variables
- may reduce the spin-up problem in early simulation hours
- Useful for short-range (1-6 h) forecasts and cycling with data assimilation
- DFI is done after program **real**, or dataassimilation step


See 'Using Digital Filter Initialization', Chap 5, UG.

Mesoscale & Microscale Meteorological Laboratory / NCAR 22

Digital filter initialization (4)

Digital filter inilialization (5)

To get pressure tendency data, set diag print=1 or 2

Mesoscale & Microscale Meteorological Laboratory / NCAR 25

Automatic moving nest options

Tropical cyclone / typhoon / hurricane applications: (&domains) **vortex interval**: time interval when vortex location is estimated **max vortex speed**: used to compute the search radius for vortex location **corral dist**: how far the vortex can move near the parent domain boundary (number of grids) track level: e.g. 700 or 500 mb time to move: hold nests still until this time

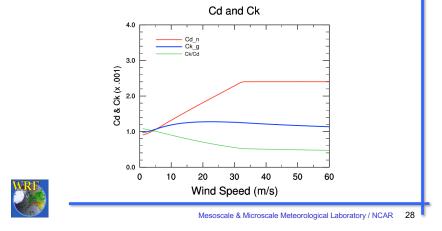
See 'Moving Nested Run', Chap 5, UG

Mesoscale & Microscale Meteorological Laboratory / NCAR

Global application

 Setup in WPS: map proj = 'lat-lon' e we, e sn: geogrid will compute dx, dy

See template 'namelist.wps.global'


- Requires only one-time period data
- In the model stage: (&dynamics) fft filter lat: default value is 45 degrees Caution: some options do not work, or have not been tested with global domain. Start with template 'namelist.input.global'

See 'Global Run' section, Chap 5, UG

Mesoscale & Microscale Meteorological Laboratory / NCAR 26

TC options (1)

isftcflx: alternative C_d (Donelan) and C_k (=2, Garratt) formulation for TC application (&physics)

TC options (2) (&physics)

sf_ocean_physics=1: simple ocean mixed layer
oml_hml0: initial ocean mixed layer depth
oml_gamma: lapse rate in deep water
oml_relaxation_time: time scale to relax ocean
temperature back to initial value

The ocean mixed layer model can also be initialized with real-data, e.g. HYCOM. More info can be found at

http://www2.mmm.ucar.edu/wrf/users/hurricanes/wrf_ahw.html

Mesoscale & Microscale Meteorological Laboratory / NCAR 29

Tracer option

Add the following in *cdynamics* to activate tracer option (default no. is 8: with array names tr17 1, tr17 2, ..., tr17 8):

tracer_opt = 2,

One would need some way to initialize the tracer. A simple initialization can be found in program real (dyn_em/module_initialize_real.F)

TC options (3) (&physics)

sf ocean physics = 2:

3D Price-Weller-Pinkel (PWP) ocean model based on Price et al. (1994). It has full ocean process (e.g. advection, pressure-gradient force, and mixing). It doesn't have ocean bathymetry (or ocean depth). Only simple initialization is provided in the model (added in Version 3.5).

Mesoscale & Microscale Meteorological Laboratory / NCAR 30

Trajectory option

Add the following in *sphysics* to activate trajectory option:

traj_opt = 1,

And set the number of trajectories in &domains:

num_traj = 1000, (default value)

<u>New in V3.9</u>: it can output meteorological variables, as well as chemistry ones, along the trajectories.

Stochastic parameterization schemes

This is a way to stochastically perturb forecasts (&stoch)
 skebs: = 1, activate the scheme
 nens: = N, an integer that controls the random number stream;
 a different integer will give a differently perturbed forecast
 perturb_bdy: = 1, use SKEB pattern; = 2, use user-provided
 pattern (new in 3.5)
 sppt: = 1, activate stochastically parameterized pert tendencies

spp: = 1, activate stochastic perturbed parameters in physics

Also see 'Option to stochastically perturb forecasts' section in Chap 5, UG

Also see http://www.cgd.ucar.edu/~berner/skebs.html

Mesoscale & Microscale Meteorological Laboratory / NCAR 33

Additional Output Option (2)

Since V3.4.1:
&diags
 p_lev_diag = 1.
 num_press_levels = 4,
 press_levels = 85000,70000,50000,20000

Output a few met fields on pressure levels : U_PL, V_PL, S_PL, T_PL, TD_PL, RH_PL, GHT_PL,

Output goes to auxiliary stream 23, so need to set auxhist23_outname, io_form_auxhist23,

auxhist23_interval, frames_per_auxhist23

Mesoscale & Microscale Meteorological Laboratory / NCAR 35

Additional Output Option (1)

prec_acc_dt = 60.: in &physics

Output precipitation in a time interval (e.g. 60 min):

PREC_ACC_C, for convective rain PREC_ACC_NC, for explicit rain SNOW_ACC_NC, for explicit snow

(Caution: May not suitable for use in long runs)

Mesoscale & Microscale Meteorological Laboratory / NCAR 34

Additional Output Option (3)

Since V3.9: &diags diags_nwp = 1.

Output a few met fields on model levels :

Sealevelp, temperature, geoheight, pressure, umet, vmet, speed, U10, V10, Q2, T2, RAINC, RAINNC, etc. (more in V4.1)

Output goes to auxiliary stream 1, so need to set auxhist1_outname, io_form_auxhist1,

auxhist1 interval, frames per auxhist1

Mesoscale & Microscale Meteorological Laboratory / NCAR 36

Additional Output Option (4)

output_diagnostics = 1: (&time_control)
output max, min, time of max and min, mean
value, standard deviation of the mean for 8
surface variables (T2, Q2, TSK, U10, V10, 10 m
wind speed, RAINCV, and RAINNCV [time step
rain])

```
auxhist3_outname ="wrfxtrm_d<domain>_<date>"
io_form_auxhist3 = 2
auxhist3_interval = 1440, 1440,
frame per auxhist3 = 10, 10,
```


Mesoscale & Microscale Meteorological Laboratory / NCAR 37

Additional Output Option (6)

do_radar_ref = 1: (&physics)

Compute radar reflectivity using parameters used by different microphysics. Works for options mp_physics = 2,4,6,7,8,10,14,16. Option 9, NSSL mp also produce radar reflectivity output.

Data goes to history file.

Mesoscale & Microscale Meteorological Laboratory / NCAR

Additional Output Option (5)

nwp_diagnostics = 1: (&time_control)

Output max 10 m wind speed, max helicity in 2-5 km layer, max w in updraft and downdraft below 400 mb, mean w in 2-5 km layer, and max column graupel in a time window between history output times.

Data goes to history file.

Mesoscale & Microscale Meteorological Laboratory / NCAR 38

Additional Output Option (7)

do_avgflx_em = 1: (&dynamics)

output history-time-averaged, column-pressurecoupled u, v and w: AVGFLX_RUM, AVGFLX_RVM, AVGFLX_RWM – useful for driving downstream transport model

Additional Output Option (8)

afwa_*_opt = 1: (&afwa, with sub-options)

output over 60 diagnostic variables to history file (for example, MSLP, precipitable water, cloud cover, etc.)

See Registry/registry.afwa for full listing.

Data goes to history as well as auxhist2 file.

Mesoscale & Microscale Meteorological Laboratory / NCAR

IO quilting: &namelist_quilt

I/O quilting control:

- nio_tasks_per_group (>0) : allow IO to be done
 on separate processors. Performance improvement
 for large domain runs. A value of 2 to 4 works well.
- **io_groups (>1) :** number of I/O streams that the quilting applies.

See 'Using IO Quilting' section, Chap 5, UG

Other ways to improve IO: 1) p-netCDF; 2) use netCDF4 compression option; 3) use

io_form_history=102 to output patches of data

Mesoscale & Microscale Meteorological Laboratory / NCAR

Additional Output Option (9)

More climate output (from RASM, new in V3.9): mean_diag = 1: (with interval options, &time_control)
diurnal_diag = 1

Output time-step and diurnal averaging of a number of surface variables and radiative fluxes at surface and top of atmosphere (e.g. monthly averages)

See run/README.rasm_diag for details, and Registry/registry.rasm_diag for full listing.

Data goes to auxhist5 and auxhist6 files.

Mesoscale & Microscale Meteorological Laboratory / NCAR

Time Series Output (1)

 It is a special output in text format with file name like

prefix.d<domain>.TS

It outputs 14 surface variables at every time step:

e.g. 10 m u/v, 2 m T/qv, precipitation, radiation fluxes, surface fluxes

• One file per location (e.g. at weather station), per domain

Time Series Output (2) Time Series Output (3) Not a namelist option to turn it on It also outputs profiles of U, V, Th, Qv, PH If output more than 5 locations, use namelist (levels set by max ts level, default 15): max ts locs in &domains prefix.d<domain>.UU • Depends the presence of a file called 'tslist' (a prefix.d<domain>.VV sample of the file is available in **WRF/run/** 1 prefix.d<domain>.TH # 24 characters for name | pfx | LAT | LON prefix.d<domain>.QV #_____ Cape Hallett hallt -72.330 170.250 prefix.d<domain>.PH mcm -77.851 166.713 McMurdo Station This file provides a list of locations where you would like to output time series • One file per location (e.g. at weather station), • More information in run/README.tslist and per domain. 'Output Time Series' section, Chapter 5, UG Mesoscale & Microscale Meteorological Laboratory / NCAR 45 Mesoscale & Microscale Meteorological Laboratory / NCAR 46 Time Series Output (4) Recommended Start with the namelist template in a particular test Content in hallt.d01.TS: directory, and the options specified in the file, and Cape Hallett 1 1 hallt (36.710, -79.000) (41, 38) (make modifications. 36.600, -79.142) 159.6 meters 1 0.050000 1 41 38 275.47397 0.00288 3.52110 -2.34275 99988.76563 244.81276 Chapter 5 of ARW User's Guide, pages 5-34 – 5-36: 0.00000 -29.94841 4.09765 273.90295 278.20197 0.00000 0.00000 0.00000 examples for various applications. 1 0.100000 1 41 38 275.56287 0.00282 3.14414 -2.05875 99956.98438 244.81276 0.00000 -25.64095 4.18446 273.78323 278.18314 0.00000 0.00000 0.00000 For special applications in ARW, look for related 12Z 24 Jan 2000 namelists in the file examples.namelist in test/em real/ 294. directory.

For more information on global extension, DFI and adaptive time step, read Tech Note, and User's Guide.

Mesoscale & Microscale Meteorological Laboratory / NCAR 48

Mesoscale & Microscale Meteorological Laboratory / NCAR 47

Simulation Time

294. 294. 294.

203