NESTING IN WRF

Kelly Werner July 2018

what is a nest?

- Covers a portion of the parent domain, and is fully contained by the parent domain
- Driven along its lateral boundaries by the parent domain

 May feedback the computed values back to the parent domain

What is a nest?

- A *finer-resolution* domain embedded in a coarser resolution domain, and run together with the coarser resolution domain
- Enables running at a higher-resolution without:
 - Uniformly high-resolution over a large domain VERY expensive
 - High resolution for a very small domain, with mismatched time and spatial lateral boundary conditions

When Should I Use Nests?

- Need to simulate localized phenomena: convection, topography, landuse-forced, etc.
 - What resolution is necessary to resolve what you are interested in?
 - Input data resolution is too coarse by more than a factor of 5-10x
 - · Would like to provide better boundary conditions for the area of interest
 - BC's for external sources are typically 3-6 hours and do not have tendencies for all predicted fields
 - Computing resources not available for uniform coverage

When Should I Use Nests?

When Should I Use Nests?

Types of Nesting

- Using a single input domain (met_em.d01*)
 - No met_em.d02* files are used
 - All fields are interpolated from the model coarse grid
 - Only recommended if nest is over the ocean
- Using multiple input domains
 - · Each domain contains full input data files (including topography, landuse, etc.)
- Specified move
 - Build WRF with "2=preset moves"
 - Must specify every move
 - · Can use, but tedious to set-up
- Automatic move
 - Build WRF with "3=vortex following"
 - Only for tropical cyclone tracking
 - Expensive for single large nest
- ndown.exe
 - Use coarser WRF model output to drive finer resolution domains (i.e. 'downscaling')
- If you have run a long coarse domain simulation (years) and later decide you want to have a nest with higher resolution.

Types of Nesting

One-way/two-way nesting

- Determined by the namelist parameter "feedback"
 - feedback = 0 (turned off/one-way)

Lateral boundary conditions are fed to the nest, from _____ the parent.

namelíst.wps - WPS

namelist. wps set-up: Eshare

To edit the namelist.wps file, make sure you are in the WPS/ directory

Make sure to edit start/end dates for all domains!

namelist. wps set-up: <u>sgeogrid</u>

i_parent_star	= 1, ratio = 1, t = 1, t = 1,	70,	Used for nesting purposes - What is the grid ratio for each nest? - Where is it located inside its parent? - parent_grid_ratio: integer ratio required
e_sn	= 175, = 145, es = 'defau = 30000.	181, lt', 'default',	Domain sizes : How many grid points does each domain have?
dy map_proj ref_lat ref_lon truelat1 truelat2 stand_lon	= 30000, = 'lambert', = 37.0, = -97.0, = 45.0, = 30.0,		

namelist. wps set-up: <u>Egeogrid</u>

&geogrid	
parent_id parent_grid_ratio i_parent_start j_parent_start	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
e_we e_sn geog_data_res	= 175, 181, = 145, 181, = 'default', 'default',
dx dy map_proj = 'la ref_lat = 37 ref_lon = -9 truelat1 = 49 truelat2 = 30 stand_lon = -9 geog_data_path = /	7.0, 97.0, 5.0, 9.0,

 $parent_id\,=\,1,\,1,\,2$

namelist. wps set-up: <u>Egeogrid</u>

23

Feedback 3:1 Ratio

When using feedback, conditions are fed back to the parent domain from the child along the rows and columns, and at the mass points (center)

U: east-west velocitiesV: south-north velocitiesO: all other meteorological data

Averaging is performed

WRF Parent-nest Domain Overlap

 The nested domain can be placed anywhere within the parent domain and the nested grid cells will exactly overlap the parent cells at the coincident cell boundaries

Coincident parent/nest grid points:

- eliminate the need for complex, generalized remapping calculations
- enhances model performance and portability.

e we and e sn: Each domain's full west-east and south-north dimensions

- Domains should be no smaller than about 100x100 - Avoid placing any boundaries over

complex terrain - Keep nest away from coarse domain

namelist. wps set-up: <u>Egeogrid</u>

How to determine the nest grid numbers?

- Determine the beginning and ending locations for the nest on the parent domain
- Use the following to get these numbers:

(ending index - beginning index)*ratio+1 e.g. (127-67)*3+1 = 181 130

namelist. wps set-up: <u>Egeogrid</u>

- Good practice to have ~1/3 of coarse-grid surrounding each side of nest - Nest can be placed a bit downstream of the inflow boundary

namelist. wps set-up: <u>Egeogrid</u>

&geogrid	
parent_id parent_grid_ratio i_parent_start j_parent_start	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
e_we e_sn geog_data_res	= 175, 181, = 145, 181, = 'default', 'default',
dx dy map_proj = 'la ref_lat = 37 ref_lon = -9 truelat1 = 45 truelat2 = 30 stand_lon = -9 geog_data_path =	7.0, 7.0, 5.0, 9.0,

dx and dy:

Only need the coarse domain resolution. The geogrid program calculates the nest resolution(s) using the "parent grid ratio"

*Note:

No changes need to be made to the &ungrib and &metgrid namelists records for nesting purposes

namelist.input (WRF)

namelist. input set-up: Stime_control &time_control run_days = 0, run_hours = 24, = 0, run_minutes run_seconds = 0,2012, 2012, start_year = 2012 start month = 01. 01. 01. start_day = 27, 27, 27, start_hour = 00, 00, 00, start_minute = 00, 00, 00, 00, start_second = 00,00, 2012, end_year = 2012, 2012, end_month = 01,01, 01, 28, end_day = 28, 28, end hour = 00. 00. 00, 00, end_minute = 00, 00, end_second = 00, 00, 00, interval_seconds = 10800 input_from_file = .true., .true. true. 60, 🖌 history_interval = 360, 60 frames_per_outfile = 1000, 1. 1 = .false. restart restart_interval = 180

= 2

= 2

io_form_history

io_form_restart

** To edit the namelist.input file, make sure you are in the WRF/test/em_real/ (or WRF/run/) directory

start/end date/times:

These values typically will be the same for all domains

history interval:

May choose to have more frequent output time for nests

frames_per_outfile:

May choose to have all history outputs in a single file, or in multiple files - to display geographic boundaries in newer versions of neview, it's necessary to have 1 file per time period.

namelist. input set-up: gdomains

&domains]
time_step	= 180,	max dom:
time_step_fract_num	= 0,	Activate nests - # of domains to run
time_step_fract_den	= 1,	
max_dom	= 2,	
e_we	= 175, 181, 94, 🗲 🗕	e weande sn:
e_sn	= 145, 181, 91,	should match namelist.wps values
e_vert	= 36, 36, 36, 👞	
p_top_requested	= 5000,	
num_metgrid_levels	= 32,	e vert:
num_metgrid_soil_levels	= 4,	All columns usually have the same
dx	= 30000, 10000, 3333.33,	value
dy	= 30000, 10000, 3333.33,	
grid_id	= 1, 2, 3,	dx/dy:
parent_id	= 0, 1, 2,	must set values for each domain.
i_parent_start	= 1, 70, 30,	make sure values correspond with
j_parent_start	= 1, 67, 30,	
parent_grid_ratio	= 1, 3, 3,	"parent_grid_ratio"
parent_time_step_ratio	= 1, 3, 3,	- for non-integer grid
feedback	= 1,	resolutions, use at least two
smooth_option	= 0	decimal places
/		
L		1

namelist. input set-up: gdomains

&domains grid_id parent_id i_parent_start j_parent_start parent_grid_ratio parent_time_step_ratio feedback smooth_option	= 1, = 0, = 1, = 1, = 1, = 1, = 1, = 1,	1, 70, 67, 3, 3,	2, 30, 30, 3,	All must be set to the same values used in namelist.wps feedback: Whether a nest will overwrite parent results - 2-way nesting: feedback = 1					
- 1-way nesting: feedback = 0 parent_time_step_ratio: See next slide!									

Nested 3:1 Parent Time Step Ratio d01 Example: 3-domain nested run • D01: a single 3 min dt • D02: a single 1 min dt • D03: 20 second intervals, up to 1 min Step 1 d01 Step 2 Steps 3, 4, 5 Step 6 Steps 7, 8, 9 Step 10 Steps 11, 12, 13

Where do I start?

- Start with a namelist template provided in test/em_real (or WRF/run/)
- Use documentation to guide your namelist modifications
 - README.namelist (found in WRF/run/)
 - examples.namelist (found in WRF/test/em_real/)
 - Users' Guide, Chapter 5
 - http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/V4.0/users_guide_chap5.htm
 - Namelist Best Practice web pages:
 - WPS: <u>http://www2.mmm.ucar.edu/wrf/users/namelist_best_prac_wps.html</u>
 - WRF: <u>http://www2.mmm.ucar.edu/wrf/users/namelist_best_prac_wrf.html</u>
- Not all namelist options are domain dependent. If in doubt:
 - Registry.EM_COMMON or registry.io_boilerplate (found in WRF/Registry/) README.namelist
 - grep for parameter names look for "max_dom"
 - Rule of thumb: If default namelist only has 1 column, don't add values for other columns!

namelist. input set-up: sphysics

- You should use the same physics options for all domains for all schemes
 - Exceptions:
 - cumulus_scheme (cu_physics): may need to be turned off for a nest that has a grid distance of only a few kilometers
 - may turn off PBL scheme for resolutions close to 100 m
- Use same values for physics calling frequency parameters (for each domain)
 - radt: radiation time step
 - bldt: boundary layer time step
 - cudt: cumulus scheme time step

Computationally inexpensive – no reason to not always set to zero (run every time step)

Successful Nested Run: WPS

- Modify namelist.wps for multiple domains (additional columns)
- Use same executables for running with a single domain
- geogrid.exe output: geo_em.d01.nc, geo_em.d02.nc, etc.
- ungrib.exe output: same as single domain not domain dependent
- metgrid.exe output: met_em.d01*, met_em.d02*, etc.

Successful Nested Run: WRF

- Modify namelist.input for multiple domains (additional columns)
- Link in the met_em* files and issue same executables for running with a single domain

real.exe output:

wrfbdy_d01

- Lateral boundary data for all times (domain 01 only)

wrfinput_d01, wrfinput_d02, etc.

- Single time-level data at the model's start time (for each domain)
- 1 file per domain

wrf.exe output:

wrfout_d01*, wrfout_d02*, etc.
 One for each domain, for each history time (depending on 'frames_per_outfile')
wrfrst_d01*, wrfrst_d02*, etc.

- If "restart_interval" is less than or equal to the integration time

Summary

- Decide the best strategy to run your simulation
- If nesting is required, design your nest configuration
 - Design the coarse domain first
 - Determine the beginning and ending indices of the nest on the coarse domain
- Choose the appropriate nesting strategy:
 - one-way, two-way, or one-way via ndown

Questions?