Best Practices of WRF
Best Practices of WRF * WRF is well-tested and documented. It can be used by people

who have no experiences or formal training.

. . . . ® However, in spite of advanced parameterization schemes in WRF
Wel Wang Jimy Dudhia M"?g Chen and high-resolutions permitted by faster computers, correct choice
National Center for Atmospheric Research of options is still a prerequisite for successful application of WRF
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Best Practices of WRF Best Practices of WRF

® A Thorough Analysis of the Research Topic ® The Model Configuration
® Conclusions and approaches in previous studies? Questions ® Domain — often have profound influences
not answered? Incomplete knowledge? Important processes °

Resolution (horizontal and vertical)

(convection, radiation, surface forcing, etc.? ) e Time and method of initialization

® extensive literature review

e Cold start?
® Your Scientific or Practical Objectives? ® Variational data assimilation?
® Scientific questions you want to answer ® Spinup time?
® \What can you do with WRF? Where and how WRF simulations ® [ateral Boundary Locations

may be helpful ® Physics/dynamics options




How to determine the model domain

® How large do they need to be?

® Should not be too small, otherwise solution will be determined
by forcing data

® No less than 100x100 (at least 5 grid points are in the boundary
zone)

® Where to place my lateral boundaries?
® Avoid steep topography

® Away from the area of interest

Importance of domain

12-hour simulations of 250-hPa winds (m s-1) from the 40-
km grid increment Eta Model initialized at 1200 UTC 3
August 1992, based on experiments that used a large (a) and
a small (b) computational domain. (Warner, 2011)

Initialization and Spin-up Issues

® Model problems often arise from poor initial condition
® Appropriate initial time
® Quality of initial condition
® Check land data:
e.g. landuse: does it represent my area well?
® Know about the data: how good are the data?
® Forecast data
® Reanalysis data
e Climate model data

® |n the first few hours, expect noise in pressure fields

® Mostly sound waves adjusting winds to terrain. No harmful lasting
effects

Impervious fraction (%)

Skintemp simulated with
and without Impervious
(Aug 26, 2006, 102)

Pleim et al., 2012




Initialization and Spin-Up

Convective Spin-Up: An example of NCAR’s 3-km convective runs
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Lateral Boundary Condition

® A basic and potentially serious limitation to regional model
simulation, including WRF

® Possible negative effects of LBC

® How to minimize the negative LBC impact on forecast quality:
guidelines and cautions

® Strong forcing should be avoided at lateral boundaries

Resolution-consistent input data should be used

More frequent is better

Interactive boundaries should be employed when possible
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Grid Size and Impact

® Extreme weather event forecast
® The Derecho of 29-30 June 2012

® A =3 km: Traditional cloud-permitting resolution
® No need for deep-convective parameterization

® A= 30 m: Traditional large-eddy simulation (LES) resolution
® No need for a planetary boundary layer (PBL) parameterization

® Turbulent eddies (i.e., thermals, rolls, etc.) are handled by the
model’s governing equations [plus surface-layer and subgrid
turbulence schemes]

® 100 m<A<1km
® APBL scheme will still be needed for most cases
® Shallow cumulus probably can be turned off (not for A > 500 m )
® Advection Scheme: better use a monotonic/non-osciallaory option
(adv_opt=2)

(Bryan, 2014)




Case Study: The Derecho of 29-30 June 2012

Simulated maximum wind

Radar [ O N

composite E b iy
reflectivity

WRF
simulation of
maximum
reflectivity,
DX=3km,
initialized at
1200 UTC

Model Levels and High Tops Complex Terrain

® Atleast 32 or more levels for a model top at 50 mb * Steep terrain ( > 45 degrees) may cause numerical stability
®  For high tops < 50 hPa prOb|emS.

*  Stratosphere option for base state: Iso_temp=200 K. This prevents base state from becoming unrealistically
cold.

* Since V3.6.1, a positive lapse rate is allowed in stratosphere e IncreaSing epssm ( 01'>05 oreven Iarger)
®  Fortops near 1 hPa (45-50km), 60 or more levels are required. ° ThlS iS a Sound wave damper that can Stabilize Slope

. Ozone climatology becomes important above 30 hPa, where some or all of the ozone layer are included

*  Use RRTMG since CAM monthly ozone is available in RRTMG treatment by dynamics
* Vertical grid distance should not be larger than 1000 m * Forlargessiopes, setidifilopt=2
(Radiation, microphysics, less accurate lateral BC) e diff_opt=1is less realistic than diff_opt=2, and diff_opt=2
used to be less stable but becomes more stable in recent

® If finer horizontal grid size is used, more levels will be
needed in the vertical

versions

® For V3.6 and later version, diff_opt=2 and km_opt=4 can be
® Make sure dz < dx used together to improve stability




Selecting Model Physics

® Many options = more works
® hitp://www2.mmm.ucar.edu/wrf/users/phys references.html
® http://www2.mmm.ucar.edu/wrf/users/docs/wrf-phy.html
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’ ® A given set of physics will perform differently depending on
domain size, location, initialization and phenomenon of interest

® (Certain combinations better tested than others, but still no
guarantee for better performance
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Physics in multi-scale model Physics in Multi-scale Model
¢ Grid size and cumulus ® Grid Size and PBL
® DX > 10km, yes ® PBL assumes all eddies are unresolved
® DX < 4km, probably not e DX > 500 m, PBL should be activated
® Grey Zone: 5-10km, no consensus, may try to use scale-aware ® | ES assumes eddies are well resolved
cumulus scheme, such as GF, MSKF. e DX < 100 m, LES should be applied

® For DX 100-500 m, either may work to some extent

® Terra incognita: resolved CISCs, violation of PBL assumption,
and unresolved interaction between CISC and smaller scale

® Grid size and microphysics
® For DX > 10km, no complex scheme is necessary
® For DX <4km ( convection-resolving), need at least graupel

turbulence.
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U.S. DEPARTMENT OF COMMERCE, NATIONAL WEATHER SERVICE
*PRELIMINARY* NORTH ATLANTIC HURRICANE TRACKING CHART
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of Hurricane Sandy: why such a large

ECMWF(pink)
GFS(green)
TWRF(red,
Tiedtke )
SWRF(blue,
SAS)

(Grid interval from left to right:

L T id i 30, 60, 90-km;
° o " Top two: initialized at 0000 and
LEEE /| 1200 UTC 23 Oct;
% i - Bottom two: initialize at 0000
E and 1200 UTC 24 Oct,)

Test of Sandy Simulation

® For this case, cumulus parameterization is the dominant driver of
forecast track accuracy

® Poor track forecasts by the GFS/GEFS are not due to
‘inappropriate’ initial conditions, nor are they consequences of the
differences in model resolution

® These types of examples serve to emphasize the importance of
parameterization development as a necessary condition for
forecast improvement




12-36hr FCST of Rain

Other Options That May Be Considered

Example:
® Upper level damping over topography
® Gravity-wave drag if resolution is coarse

® Digital Filter Initialization
® Horizontal Diffusion
® Spectral Nudging

Spectral Nudging

© ltis useful for controlling longer wave phases. Compensates for
errors due to low-frequency narrow lateral boundaries

® The “spectral nudging” method imposes time-variable large-scale
atmospheric states on a regional atmospheric model

e
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© Spectral nudging may be seen as a suboptimal and indirect data
assimilation technique.

® Wave number is selected so that domain size/wavenumber =~1000km in X
and Y direction

® Nudge U, V, THETA, Geopotential (not QV, since it has no wave pattern)

® Can nudge in all levels or use ramp above a specified model level
(if_zfac_ph, k_zfac_ph, etc.)
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Horizontal 10 m wind speed fields (m s—1) for typhoon Songda
(200418), on 1 September 2004, 0:00.
From left: CFSR reanalysis, CCLM-NN, CCLM-SN.

(Frauke Feserl and Monika Barcikowska, Environmental Research Letters, 2012)

¢ However, strong nudging may reduce or filter out extreme events
since nudging pushes the model toward a relatively smooth, large-
scale state.




