

Real program	in a nutshell	Real program in a nutshell		
 Function Standard input variables Base State Standard generated output Vertical interpolation Soil level interpolation 	What defines the base state? What is the vertical coord? Not exactly potential temperature	 Function Standard input variables Base State Standard generated output Vertical interpolation Soil level interpolation 	What are the mandatory files for success?	
Real program i • Function • Standard input variables • Base State	in a nutshell How does the user change the vertical coordinate? Are there recommendations?	Real program i • Function • Standard input variables • Base State • Standard generated output	in a nutshell Why is the surface layer scheme a good example of changing physics options?	

Function	Function
 The WRF model pre-processor is <i>real.exe</i> The real.exe program is available <i>serial</i> or <i>DM parallel</i> (primarily for aggregate memory purposes, as opposed to timing performance) This program is automatically generated when the model is built and the requested use is for a real data case The real.exe program takes data <i>from WPS</i> and transform the data <i>for WRF</i> Similar to the ARW idealized data pre-processor, real.exe is tightly coupled to the WRF model through the <i>Registry</i> 	 <i>3D forecast</i> or simulation <i>Meteorological input</i> data that primarily originated from a previous forecast or analysis, probably via the WPS package Anticipated <i>utilization of physics</i> packages for microphysics, surface conditions, radiation, convection, and boundary layer (maybe usage of nudging capabilities)
Function	Function
 A non-Cartesian <i>projected domain</i> Lambert conformal, Mercator, polar stereographic, rotated latitude/longitude (global or regional) Selection of <i>realistic static fields</i> of topography, land use, vegetation, and soil category data Requirement of <i>time dependent</i> lateral boundary conditions for a regional forecast 	 Generation of <i>diagnostics</i> necessary for assumed WRF model input Input field <i>adjustment</i> for consistency of static and time dependent fields (land mask with soil temperature, etc.) ARW: computation of <i>reference</i> and <i>perturbation</i> fields Generation of <i>initial</i> state for each of the requested domains Creation of a <i>lateral boundary file</i> for the most coarse domain <i>Vertical interpolation</i> for 3d meteorological fields and for sub-surface soil data

Function	Standard Input Variables
 Run-time options specified in the Fortran namelist file (namelist.input for real and WRF) Compile-time options Changes inside of the source code Compiler flags CPP ifdefs Modifications to the Registry file 	 The metgrid program typically provides meteorological data to the real program. Coordinate: The real program is able to input and correctly process any <i>strictly monotonic</i> vertical coordinate Isobaric: OK Sigma: OK Hybrid: OK
Standard Input Variables	Base State
 The metgrid program typically provides meteorological data to the real program. Mandatory: 3d and surface: horizontal winds, temperature, relative humidity, geopotential height 3d soil: soil temperature 2d fields: surface pressure, sea-level pressure, land mask Optional (but desirable): 3d soil: soil moisture 2d fields: topography elevation of input data, SST, sea-ice, skin temperature 	 Several of the mass-point fields are <i>separated</i> into a time-independent <i>base state</i> (also called a reference state) and a <i>perturbation</i> from the base state The base state fields are only functions of the <i>topography</i> and a few user-selectable constants If the <i>topography changes</i>, such as with a moving nest, the base state fields are modified <i>Feedback</i> for 2-way nesting also impacts base state fields through topographic averaging – <i>inside of the WRF model</i> No base state computations are required <i>prior to the real program</i>

Horizontal Grid Cell Locations

Horizontal Grid Cell Locations

Standard Generated Output

- For regional forecasts, the real program generates both an both an initial (*wrfinput_d01*) and a lateral boundary (*wrfbdy_d01*)
- The boundary file is not required for *global forecasts* with ARW (look at MPAS for global simulations)
- The *initial condition* file contains a *single time period* of data
- These files contain data used directly by the WRF model
- The initial condition file may be ingested by the *WRFDA* code (referred to as a *cold-start*)
- If *n* times were processed with WPS and real, the lateral boundary file contains *n*-1 time slices

Real-Data Lateral Boundary Condition: Location of Specified and Relaxation Zones

Lateral Boundary Condition Times

Vertical Interpolation

- A number of vertical *interpolation options* are available to users
- The options can have a significant impact on the initial conditions passed to the model
- More information is contained in the info file *README.namelist* in the *run* directory
- Options are located in the *&domains* namelist record of *namelist.input*

Vertical Interpolation

- Impact: Expected region of changes
- Non-standard setting
- Which level is being viewed
- Topography and domain for difference plots, 160x140, 4 km, input = 40 km NAM

Vertical Interpolation

- Impact: few lowest levels only
- force_sfc_in_vinterp = 0
- η level 1
- Theta (-8 K blue, 0 K yellow)

Vertical Interpolation

- Impact: few lowest levels only
- force_sfc_in_vinterp = 6
- η level 4
- Theta (0 K blue, 10 K red)

• U (-5 m/s blue, 6 m/s red)

Vertical Interpolation

- Impact: above first 4 levels, most near tropopause
- lagrange_order = 2
- η level TOP
- Theta (0.7 K blue, 1.6 K red)
- U (0.4 m/s blue, 1.4 m/s red)

Vertical Interpolation

- Impact: outer few rows and column, amplitude damps upward
- smooth_cg_topo = T
- η level 1
- Theta (-10 K blue, 9 K red)
- U (-6 m/s blue, 6 m/s red)

Vertical Interpolation

- Impact: lowest level only
- Iowest_lev_from_sfc = T
- η level 1
- Theta (-10 K blue, 8 K red)

U (-3 m/s blue, 7 m/s red)

Vertical Interpolation

- Impact: lowest few levels
- use_surface = F
- η level 1
- Theta (-11 K blue, 0 K red)

U (-3 m/s blue, 4 m/s red)

Vertical Interpolation	Vertical Interpolation
 Make sure input data is vertically <i>ordered</i> as expected Input 3-D pressure and T, topo, Z, moisture used to compute total <i>surface pressure</i> Compute target <i>vertical coordinate</i> using normalized dry column pressure pressure The <i>η surfaces</i> may be computed or selected Vertically interpolate input fields in pressure to the <i>η surfaces</i> in dry pressure: default all variables linear in log(pressure) 	 Select reasonable η levels, or let the real program do it for you Verify that the <i>"thicknesses" are acceptable</i>, generally about the same value in the free-atmosphere and less than 1000 m It is <i>SAFEST to NOT initially choose η values</i> Initially, <i>select the number</i> of ετα levels <i>Plot profiles</i> of the resultant heights <i>Adjust the η levels</i> accordingly A few namelist options, the terrain elevation, and eta levels completely define the model coordinate for the WRF code
Vertical Interpolation • The η surfaces are computed with a few NML parameters: &domains e_vert = 50, 50, 50 p_top_requested = 1000, &dynamics base_temp = 290. iso_temp = 200	Vertical Interpolation Vertical cross sections of THICKNESS of each model layer, with 50 vertical levels above the PBL, ptop = 10 hPa. Uniform layers Exaggerated Stretching 720-820 m 2000 m 1000 m 800 m 575 m 575 m

Physical Parameterization Settings Soil Level Interpolation • The real program and the WRF model are *tightly coupled* • The WRF model supports several Land Surface schemes: - sf surface physics = 1, Slab scheme - 5 layers • Many *physical parameterization* settings and other options - Defined with thicknesses: 1, 2, 4, 8, 16 cm used by the WRF model are *initialized by the real* program Noah RUC • If you *change physics options*, it is safest to *re-run* the Layers Mid point Levels 000 - 010 cm - 005 cmreal program 000 cm 010 – 040 cm -- 025 cm 005 cm 040 – 100 cm -- 070 cm 020 cm 040 cm 160 cm 100 - 200 cm - 150 cm300 cm Real program in a nutshell Real program in a nutshell • Function What are the required, • Function optional variables? Standard input variables Standard input variables ٠ Base State **Base State** ٠ From where do they come? Standard generated output Standard generated output ٠ ٠ Vertical interpolation Vertical interpolation ٠ • What are the restrictions on • Soil level interpolation • Soil level interpolation metgrid vertical coordinates?

Real program in	n a nutshell	Real program in a nutshell			
 Function Standard input variables Base State Standard generated output Vertical interpolation Soil level interpolation 	What defines the base state? What is the vertical coord? Not exactly potential temperature	 Function Standard input variables Base State Standard generated output Vertical interpolation Soil level interpolation 	What are the mandatory files for success?		
 Function Standard input variables Base State Standard generated output Vertical interpolation Soil level interpolation 	n a nutshell How does the user change the vertical coordinate? Are there recommendations?	 Real program Function Standard input variables Base State Standard generated output Vertical interpolation Soil level interpolation 	in a nutshell Why is the surface layer scheme a good example of changing physics options?		

(as close as possible, Klingon for *finis*)

Real namelist

• The **namelist.input** file is separated into separate namelist records, usually with related areas

&time_control - dates, time, I/O
&domains - domain grid sizes, REAL options
&physics - land scheme and layers, land cats
&dynamics - base state, GWD
&bdy_control - lateral boundary conditions

Real namelist: PART 2

- The real program and WRF model SHARE a namelist file: namelist.input
- Some entries are used by both programs: dimensions, starting date/time, LBC, FDDA
- Many entries are only for one of the programs: real does not care about advection, diffusion, DFI

WRF

/test

/em_real

/namelist.input

Real namelist

&time_control

start_year	=	2017,	2008,
start_month	=	05,	01,
start_day	=	30,	01,
start_hour	=	12,	00,
end_year	=	2017,	2008,
end_month	=	05,	01,
end_day	=	30,	01,
end_hour	=	12,	00,
interval_seconds	=	21600	
input_from_file	=	.t.,	.t.,
io_form_input	=	2	
io_form_boundary	=	2	

	Real namelist			Real namelist	
<pre>&time_control start_year start_month start_day start_hour end_year end_month end_day end_hour interval_seconds input_from_file io_form_input io_form_boundary</pre>	<pre>= 30, 01, = 12, 00, = 2017, 2008, = 05, 01, = 30, 01, = 12, 00, = 21600 = .t., .t., = 2</pre>	START: Same as metgrid	<pre>&time_control start_year start_month start_day start_hour end_year end_month end_day end_hour interval_seconds input_from_file io_form_input io_form_boundary</pre>	<pre>= 05, 01, = 30, 01, = 12, 00, = 2017, 2008, = 05, 01, = 30, 01, = 12, 00, = 21600 = .t., .t., = 2</pre>	END: Same as metgrid
	Real namelist			Real namelist	
start_month start_day start_hour	<pre>= 2017, 2008, = 05, 01, = 30, 01, = 12, 00, = 2017, 2008, = 05, 01, = 30, 01, = 12, 00,</pre>	Interval: Same as metgrid	<pre>&time_control start_year start_month start_day start_hour end_year end_month end_day end_hour interval_seconds input_from_file</pre>	= 2017, 2008, = 05, 01, = 30, 01, = 12, 00, = 2017, 2008,	How many domain from geogrid and

	Real namelist		Rea	al namel	list	
—			esn e_vert p_top_requested	= 1, = 74, = 61, = 30, = 5000,	-	
<pre>end_year end_month end_day end_hour interval_seconds input_from_file io_form_input io_form_boundary</pre>	= .t., .t., = 2	Leave default = 2 NETCDF	<pre>num_metgrid_soil_levels dx dy grid_id parent_id i_parent_start</pre>	= 27, = 4, = 30000, = 30000, = 1, = 0, = 1, = 1, = 1,	10000, 2, 1, 31,	
	Real namelist		Rea	al namel	list	
nax_dom	= 1,	REAL: Total number of domains	&domains max_dom	= 1,		Domain size in gri
nax_dom e_we e_sn e_vert	= 1, = 74, 112, = 61, 97, = 30, 30,		&domains max_dom e_we e_sn	= 1, = 74, = 61, = 30,	112,	Domain size in grid cells (u,v,w)
<pre>max_dom a_we a_sn a_vert o_top_requested num_metgrid_levels</pre>	= 1, = 74, 112, = 61, 97, = 30, 30, = 5000, = 27,	number of domains	&domains max_dom e_we e_sn e_vert p_top_requested num_metgrid_levels	= 1, = 74, = 61, = 30, = 5000, = 27,	112, 97,	
<pre>max_dom e_we e_sn e_vert p_top_requested num_metgrid_levels num_metgrid_soil_le dx dy</pre>	= 1, = 74, 112, = 61, 97, = 30, 30, = 5000, = 27, = 30000, 1000 = 30000, 1000	number of domains on INPUT	<pre>&domains max_dom e_we e_sn e_vert p_top_requested num_metgrid_levels num_metgrid_soil_levels dx dy</pre>	= 1, = 74, = 61, = 30, = 5000, = 27, = 4, = 30000, = 30000,	112, 97, 30, 10000, 10000,	,
domains max_dom e_we e_sn e_vert p_top_requested num_metgrid_levels num_metgrid_soil_le dx dy grid_id parent_id i_parent_start j_parent_start	= 1, = 74, 112, = 61, 97, = 30, 30, = 5000, = 27, = 30000, 10000 = 30000, 10000 = 1, 2, = 0, 1, = 1, 31,	number of domains on INPUT	<pre>&domains max_dom e_we e_sn e_vert p_top_requested num_metgrid_levels num_metgrid_soil_levels dx dy grid_id parent_id i_parent_start</pre>	= 1, = 74, = 61, = 30, = 5000, = 27, = 4, = 30000,	112, 97, 30, 10000, 10000, 2, 1, 31,	cells (u,v,w)

Re	al namel	ist	Real namelist			
<pre>p_top_requested num_metgrid_levels num_metgrid_soil_levels dx dy grid_id</pre>	= 61, = 30, = 5000, = 27, = 4, = 30000, = 1, = 0, = 1, = 1,	10000, 2, 1,	<pre>e_we e_sn e_vert p_top_requested num_metgrid_levels num_metgrid_soil_levels dx dy grid_id parent_id i_parent_start j_parent_start</pre>	= 1, = 74, = 61, = 30, = 5000, = 27, = 4, = 30000, = 1, = 0, = 1, = 1, = 1,	10000, 2, 1, 31,	Consistent with dimensions from metgrid
	1	ist	Rea	al name	ist	
Re	al namel					

	Real namelist	Real 1	namelis	st
<pre>&domains max_dom e_we e_sn e_vert p_top_requested num_metgrid_levels num_metgrid_soil_le dx dy grid_id parent_id i_parent_start j_parent_start parent_grid_ratio smooth_cg_topo</pre>	= 30000, 10000, = 30000, 10000, = 1, 2, = 0, 1, = 1, 31, = 1, 17, With high topo of	= 4, = 21,	2, 0,	
&physics sf_surface_physics num_soil_layers num_land_cat sf_urban_physics		es = 2, = 4, = 21,	namelis 2, 0,	The dimensions of the land categories must match the selected data source from geogrid

	Real namelis	t		Real name	elist
&physics sf_surface_physics num_soil_layers num_land_cat sf_urban_physics	= 4, = 21,	Arrays between real and WRF need to be consistently dimensioned	&dynamics base_temp gwd_opt	= 290. = 1,	
&dynamics	Real namelis	t Atmospheric	&dynamics	Real name	elist GWD allocates
base_temp =	290. 1,	temperature (K) at sea level (NOT SST) in the middle of your domain Must not change	base_temp gwd_opt		space which must be consistent between real and WRF

	Real namelist			Real namelist	
<pre>&bdy_control spec_bdy_width spec_zone relax_zone specified nested</pre>	= 1, = 4, = .t., .f.,		<pre>&bdy_control spec_bdy_width spec_zone relax_zone specified nested</pre>	= 1, = 4, = .t., .f.,	<pre>spec_bdy_width = spec_zone + relax_zone spec_zone = 1</pre>
<pre>&bdy_control spec_bdy_width spec_zone</pre>	= 1,		&bdy_control spec_bdy_width spec_zone	= 1,	REAL: d01 always
relax_zone specified nested	= .t., .f., = .f., .t.,	Can choose larger relaxation zone	relax_zone specified nested		specified=T All other domains have specified=F
spec_bdy_width	= 10, = 9,	since domain is big			

Real namelist		I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Real program in a nutshell: PART 3	
<pre>&bdy_control spec_bdy_width = 5, spec_zone = 1, relax_zone = 4, specified = .t., .f., nested = .f., .t., </pre> d01 always nested=F All other domains have nested=T		nested=F All other domains	 Access to everything Eta levels Metgrid flags Adding a variable for vertical interpolation Vertical interpolation Tracers Trajectories Options 	
A	ccess to Everyt	hing	Access to Everything	
 The primary location to modify the real program is the dyn_em/module_initialize_real.F file Contains: Registry information All of the namelist settings selected Variables from the metgrid program Variables to be sent to the WRF model Called for every time period, for every domain 		ed am model	 The value of every variable input into the WRF model is controlled through module_initialize_real.F All variables are accessed through the derived data type "grid" DO j=jts,MIN(jde-1,jte) <pre>DO i=its,MIN(ide-1,ite) <pre>grid%sst(i,j) = grid%sst(i,j) + 1 </pre> <pre>END DO</pre> </pre> 	

Access to Everything	Eta Levels	
• The dynamics variables have two time levels , indicated by the _1 and _2 suffixes. Only the _2 variables are sent to WRF.	• The vertical coordinate , eta, used in the WRF model is defined inside of the real program.	
• Some variables sent to WRF are diagnostic only	• The user may allow the real program to choose the levels (select only the number of levels in the namelist.input file)	
DO j = jts, min(jde-1,jte)	&domains	
DO i = its, min(ide,ite)	$e_{vert} = 30, 30, 30,$	
<pre>grid%u10(i,j)=grid%u_gc(i,1,j)</pre>		
END DO		
END DO	&domains	
	e_vert = 30, 40, 50, /	
Eta Levels	Eta Levels	
 Often the user needs to specify the eta levels (coordinate this with your model top) 	• Run the real program (single or small domain, one time	
	level), make sure the level thicknesses are OK (< 1000 m)	
• Use the automatic generation to your advantage	Converged znw(kte) should be about 0.0 = -5.2081142E-04	
 Use the automatic generation to your advantage Specify how many levels ABOVE the PBL that you require. Add 8 to this value. For example, you require 50 vertical levels above the PBL. 	Converged znw(kte) should be about $0.0 = -5.2081142E-04$ Full level index = 1 Height = 0.0 m Full level index = 2 Height = 56.6 m Thickness = 56.6 m Full level index = 3 Height = 137.9 m Thickness = 81.4 m Full level index = 4 Height = 244.7 m Thickness = 106.8 m Full level index = 5 Height = 377.6 m Thickness = 132.9 m Full level index = 6 Height = 546.3 m Thickness = 168.7 m	
 Specify how many levels ABOVE the PBL that you require. Add 8 to this value. For example, you require 50 	Converged znw(kte) should be about $0.0 = -5.2081142E-04$ Full level index = 1 Height = 0.0 m Full level index = 2 Height = 56.6 m Thickness = 56.6 m Full level index = 3 Height = 137.9 m Thickness = 81.4 m Full level index = 4 Height = 244.7 m Thickness = 106.8 m Full level index = 5 Height = 377.6 m Thickness = 132.9 m	
• Specify how many levels ABOVE the PBL that you require. Add 8 to this value. For example, you require 50 vertical levels above the PBL.	Converged znw(kte) should be about $0.0 = -5.2081142E-04$ Full level index = 1 Height = 0.0 m Full level index = 2 Height = 56.6 m Thickness = 56.6 m Full level index = 3 Height = 137.9 m Thickness = 81.4 m Full level index = 4 Height = 244.7 m Thickness = 106.8 m Full level index = 5 Height = 377.6 m Thickness = 132.9 m Full level index = 6 Height = 546.3 m Thickness = 168.7 m Full level index = 7 Height = 761.1 m Thickness = 214.8 m Full level index = 8 Height = 1016.2 m Thickness = 255.0 m Full level index = 9 Height = 1207.1 m Thickness = 190.9 m	
 Specify how many levels ABOVE the PBL that you require. Add 8 to this value. For example, you require 50 vertical levels above the PBL. &domains 	Converged znw(kte) should be about $0.0 = -5.2081142E-04$ Full level index = 1 Height = 0.0 m Full level index = 2 Height = 56.6 m Thickness = 56.6 m Full level index = 3 Height = 137.9 m Thickness = 81.4 m Full level index = 4 Height = 244.7 m Thickness = 106.8 m Full level index = 5 Height = 377.6 m Thickness = 132.9 m Full level index = 6 Height = 546.3 m Thickness = 168.7 m Full level index = 7 Height = 761.1 m Thickness = 214.8 m Full level index = 8 Height = 1016.2 m Thickness = 255.0 m	

Eta Levels

• Get the computed levels from ncdump, after running the real program

> ncdump -v ZNW wrfinput_d01 data:

ZNW =

1, 0.993, 0.983, 0.97, 0.954, 0.934, 0.909, 0.88, 0.8587637, 0.8375274, 0.8162911, 0.7950548, 0.7550299, 0.7165666, 0.6796144, 0.6441237, 0.6100466, 0.5773363, 0.5459476, 0.5158363, 0.4869595, 0.4592754, 0.4327437, 0.407325, 0.382981, 0.3596745, 0.3373697, 0.3160312, 0.2956253, 0.2761188, 0.2574798, 0.2396769, 0.2226802, 0.2064602, 0.1909885, 0.1762376, 0.1621807, 0.1487919, 0.1360459, 0.1239184, 0.1124378, 0.1017038, 0.09166772, 0.08228429, 0.07351105, 0.06530831, 0.05763897, 0.05046835, 0.04376402, 0.03749565, 0.0316349, 0.02615526, 0.02103195, 0.01624179, 0.01176313, 0.007575703, 0.003660574, 0;

Eta Levels

- Re-run the real program (all domains, all time periods) with the new levels in the nml variable **eta_levels**
- Replace the **PBL values** with those of your choosing.
- Augment the number of vertical levels (e_vert)
- Note that both e_vert and eta_levels are full levels

Eta Levels

&domains

```
eta_levels =
    1, 0.993, 0.983, 0.97, 0.954, 0.934, 0.909, 0.88,
    0.8587637, 0.8375274,
    0.8162911, 0.7950548, 0.7550299, 0.71656666, 0.6796144, 0.6441237,
    0.6100466, 0.5773363, 0.5459476, 0.5158363, 0.4869595, 0.4592754,
    0.4327437, 0.407325, 0.382981, 0.3596745, 0.3373697, 0.3160312,
    0.2956253, 0.2761188, 0.2574798, 0.2396769, 0.2226802, 0.2064602,
    0.1909885, 0.1762376, 0.1621807, 0.1487919, 0.1360459, 0.1239184,
    0.1124378, 0.1017038, 0.09166772, 0.08228429, 0.07351105, 0.06530831,
    0.05763897, 0.05046835, 0.04376402, 0.03749565, 0.0316349, 0.02615526,
    0.02103195, 0.01624179, 0.01176313, 0.007575703, 0.003660574, 0
```

Eta Levels

- For vertical nesting refinement, follow the similar procedure for each domain.
- Each domain will need a specification of eta levels
- The assignment of the single **eta_levels array is split** into pieces for easier understanding

- Maybe replace with
 - 1, 0.999, 0.998, 0.996, 0.993, 0.990, 0.980. 0.970, 0.960, 0.950, 0.940, 0.930, 0.920, 0.910, 0.900, 0.890, 0.880, 0.870,

Eta Levels The metgrid Flags &domains max dom = 2, • The real program and the WRF model are able to = 35,45, e vert communicate directly through the **Registry** file eta_levels(1:35) = 1., 0.993, 0.983, 0.97, 0.954, 0.934, 0.909, 0.88, 0.840, 0.801, 0.761, 0.722, The real program is only able to talk with the **metgrid** 0.652, 0.587, 0.527, 0.472, 0.421, 0.374, ٠ 0.331, 0.291, 0.255, 0.222, 0.191, 0.163, program through the **input data** stream 0.138, 0.115, 0.095, 0.077, 0.061, 0.047, 0.035, 0.024, 0.015, 0.007, 0. eta levels(36:81) = 1.0000, 0.9946, 0.9875, 0.9789, 0.9685, Specific information about the incoming data is contained ٠ 0.9562, 0.9413, 0.9238, 0.9037, 0.8813, in **special flags** that the user may set in the metgrid table 0.8514, 0.8210, 0.7906, 0.7602, 0.7298, file – usually, related to THIS VARIABLE EXISTS 0.6812, 0.6290, 0.5796, 0.5333, 0.4901, 0.4493, 0.4109, 0.3746, 0.3412, 0.3098, 0.2802, 0.2524, 0.2267, 0.2028, 0.1803, 0.1593, 0.1398, 0.1219, 0.1054, 0.0904, name=PMSL 0.0766, 0.0645, 0.0534, 0.0433, 0.0341, interp option=sixteen pt+four pt+average 4pt 0.0259, 0.0185, 0.0118, 0.0056, 0. flag_in_output=FLAG_SLP vert_refine_method = 0, 2, The metgrid Flags The metgrid Flags • The real program uses this **information** when deciding > ncdump -h met em.d01.2000-01-24 12:00:00.nc | grep FLAG :FLAG METGRID = 1 ; how to do many operations: :FLAG EXCLUDED MIDDLE = 0 ; - Is the input from metgrid? :FLAG SOIL LAYERS = 1 ; - Method to compute surface pressure :FLAG SNOW = 1 ; :FLAG_PSFC = 1 ; - Use RH vs mixing ratio vs specific humidity :FLAG_SM000010 = 1 ; computations :FLAG_SM010040 = 1 ; - Excluded middle processing :FLAG_SM040100 = 1 ; :FLAG SM100200 = 1 ; - Average surface air temperature for lake temperatures :FLAG_ST000010 = 1 ; - Water/Ice friendly vertical interpolation :FLAG_ST010040 = 1 ; :FLAG_ST040100 = 1 ; - Which levels of soil data are present :FLAG ST100200 = 1 ; :FLAG SLP = 1; :FLAG_TAVGSFC = 1 ; • All flags for the metgrid to real data transfer are contained :FLAG_QNWFA = 1 ; in share/module optional input.F :FLAG ONIFA = 1 ; :FLAG SOILHGT = 1 ; :FLAG_MF_XY = 1 ;

The metgrid Flags	Adding a Variable for Vertical Interpolation
<pre>flag_slp = 0 flag_name(1:8) = 'SLP ' CALL wrf_get_dom_ti_integer (fid, 'FLAG_' // & flag_name, itmp, 1, icnt, ierr) IF (ierr .EQ. 0) THEN flag_slp = itmp END IF</pre>	 This process is manual Every new input 3d variable that needs to be interpolated needs to have an explicit block of code added Mass-point variables (such as would be used in all physics schemes) are straight forward, as they may be largely copied using the existing templates already in place Most vertical interpolation options are supplied from the namelist.input file All interpolation is handled in dry pressure
Adding a Variable for Vertical Interpolation	Tracers
<pre>CALL vert_interp (grid%t_gc , grid%pd_gc , & grid%t_2 , grid%pb , & grid%tmaxw , grid%ttrop , grid%pmaxw , grid%ptrop , & grid%pmaxwnn , grid%ptropnn , & flag_tmaxw , flag_ttrop , & config_flags%maxw_horiz_pres_diff , & config_flags%trop_horiz_pres_diff , & config_flags%maxw_above_this_level , & num_metgrid_levels , 'T' , & interp_type , lagrange_order , t_extrap_type , & lowest_lev_from_sfc , use_levels_below_ground , & use_surface , zap_close_levels , force_sfc_in_vinterp , & ids , ide , jds , jde , kds , kde , & ims , ime , jms , jme , kms , kme , & its , ite , jts , jte , kts , kte)</pre>	 The WRF model is able to advect arrays of passive scalars (tracer 4d array) As with all other variables going into the WRF model, this data is available to be set in the real program These variables must be coordinated with the Registry names, as the tracer index is an automatically manufactured name Tracer Scalars # <pre>state real tr17_1 ikjftb tracer 1 - irhusdf=(bdy_interp:dt) \ "tr17_1" "tr17_1" "Dimensionless"</pre>

Tracers	Tracers	
 As with all 4d arrays, no space is allocated unless the packaged variables are requested for processing at run-time package tracer_test1 tracer_opt==2 - tracer:tr17_1 	<pre>! Template for initializing tracer arrays. ! A small plane in the middle of the domain at ! lowest model level is defined. IF (config_flags%tracer_opt .eq. 2) THEN DO j = (jde + jds)/2 - 4, (jde + jds)/2 + 4, 1 DO i = (ide + ids)/2 - 4, (ide + ids)/2 + 4, 1 IF ((its .LE. i .and. ite .GE. i) .and. & (jts .LE. j .and. jte .GE. j)) THEN tracer(i, 1, j, P_tr17_1) = 1. END IF END DO END DO END IF</pre>	
Trajectories	Trajectories	
 The user may specify (i,j,k) locations in the model domain to follow parcels: traj_i, traj_j, traj_k (hard coded in the module_initialize_real.F file) The current number of trajectory locations is small, 25, and is a run-time option that the user sets in the nml file &domain num_traj = 25, &physics traj_opt = 1, 	 The trajectory code uses the lat, lon locations, so the initial (i,j) value of the lat, lon is assigned IF (config_flags%num_traj .gt. 0 .and. config_flags%traj_opt .gt. 0) THEN DO j = (jde + jds)/2 - 2, (jde + jds)/2 + 2, 1 DO i = (ide + ids)/2 - 2, (ide + ids)/2 + 2, 1 IF (its .LE. i .and. ite .GE. i .and. & jts .LE. j .and. jte .GE. j) THEN grid%traj_i (icount) = i grid%traj_k (icount) = 10 grid%traj_lat (icount) = grid%xlat(i,j) grid%traj_long(icount) = grid%xlong(i,j) END IF 	

Options When there are strong normal topo gradients along the outer rows and columns of the most-coarse domain, smoothing the topography to match the incoming first guess data is a good idea. This is the same sort processing that is done to make the child and parent domains more consistent in the area of the LBC forcing &domains smooth_cg_topo = .true. 	Options Time varying fields for longer simulations are available from the technique set up for "SST Update" A new field will be automatically added to the input file to the WRF model (provided by the real program) with a few changes to the Registry file (Registry.EM_COMMON), specifying Stream 4 state real my_new_field ij misc 1 - \ i024rhdu "MY_NEW_FIELD" \ "SOME DESCRIPTION" "SOME UNITS" 	
Options • Information for using time varying data is specified at run-time in the namelist file &time_control auxinput4_inname = "wrflowinp_d <domain>" auxinput4_interval = 360 io_form_auxinput4 = 2 &physics sst_update = 1</domain>	 Real program in a nutshell: PART 3 Access to everything Eta levels Metgrid flags Adding a variable for vertical interpolation Vertical interpolation Tracers Trajectories Options 	

Real program in a nutshell: PART 3		Real program in a nutshell: PART 3	
 Access to everything Eta levels Metgrid flags Adding a variable for ver Vertical interpolation Tracers Trajectories Options 	The Derived Data Type: grid Example: grid%sst rtical interpolation	 Access to everything Eta levels Metgrid flags Adding a variable for value Vertical interpolation Tracers Trajectories Options 	Completely user defined May be different per domain ertical interpolation Be careful of the thicknesses Tightly coupled with the model lid
Real program in	n a nutshell: PART 3	Real program	in a nutshell: PART 3
 Access to everything Eta levels Metgrid flags Adding a variable for ver Vertical interpolation Tracers Trajectories Options 	The metgrid program provides flags for some internal communication real to metgrid rtical interpolation These flags are defined inside the METGRID.TBL file (for WPS) and in the file share/module_optional_input.F (real)	 Access to everything Eta levels Metgrid flags Adding a variable for vers Vertical interpolation Tracers Trajectories Options 	Requires new code inside real Examples are easily available ertical interpolation

Real program i	n a nutshell: PART 3	Real program i	in a nutshell: PART 3
 Access to everything Eta levels Metgrid flags Adding a variable for ve Vertical interpolation Tracers Trajectories Options 	Always in dry pressure Input vertical coordinate neutral rtical interpolation	 Access to everything Eta levels Metgrid flags Adding a variable for version Vertical interpolation Tracers Trajectories Options 	Simple way to initialize passive scalars ertical interpolation Users should provide info for which tracers in the Registry, and select the accompanying option in the namelist
Real program i	n a nutshell: PART 3	Real program i	n a nutshell: PART 3
 Access to everything Eta levels Metgrid flags Adding a variable for verical interpolation Tracers Trajectories Options 	A simple (i,j,k) initialization for the starting locations of trajectory points is available rtical interpolation Choose the number of trajectory points	 Access to everything Eta levels Metgrid flags Adding a variable for vers Vertical interpolation Tracers Trajectories Options 	Users may smooth the outer rows and columns so that the topography on the coarse grid and the external model are consistent ertical interpolation Users may add variables to streams easily, an example is that the SST update option could have a new field included (for example, soil moisture)