

Vertical interpolation options (2)

Program real only, & domains:

- use_levels_below_ground: whether to use data below the
 ground
- lowest_lev_from_sfc:logical, whether surface data is used to
 fill the lowest model level values
- force_sfc_in_vinterp: number of levels to use surface
 data, default is 1
- extrap_type: how to do extrapolation: 1 use 2 lowest levels; 2 - constant
- t_extrap_type : extrapolation option for temperature: 1 isothermal; 2 6.5 K/km; 3 adiabatic

Look for these in examples.namelist

Mesoscale & Microscale Meteorological Laboratory / NCAR 5

Base State Parameters

The following could be varied (program real, &dynamics):

	ase_temp	Base state surface temperature
is	so_temp	Base state stratosphere temperature (default 200 K)
Height	ase_pres_st	Pressure at which the stratosphere temperature lapse rate changes (since 3.6.1)
WRF	T _{ref}	lelp to improve simulations when model op is higher than 20 km (~ 50 mb)
E	7	Mesoscale & Microscale Meteorological Laboratory / NCAR 6

Hybrid Vertical Coordinate Option

- Decision made when running program real.exe, by setting these namelists in &dynamics hybrid_opt = 2 (0 turns it off) eta_c = 0.2 (default)
- New since V3.9
- Default in V4.0

Hybrid Vertical Coordinate Options

Defining Vertical Levels

IO Control (2)

Specify input and output files explicitly in &time_control

auxinput1_inname = "/mydata/met_em.d<domain>.<date>"
 : explicitly specify input file (it name and directory)
history_outname = "/mydata/wrfout_d<domain>_<date>"
 : explicitly specify history output file (its name and directory)

Look for these in Registry/registry.io_boilerplate

To turn an option off for a To overwrite one or more particular domain: with other options: physics_suite = `CONUS' physics suite = `tropical' cu physics = 16, 16,cu physics = -1, 0, bl pbl physics = 1, 1,sf sfclay physics = 1, 1, Mesoscale & Microscale Meteorological Laboratory / NCAR

Update control for lower boundary fields: allow SST, seaice, monthly vegetation fraction and albedo to be updated regularly during a model run:

sst update: 0 - no update 1 – update all above fields (in **&physics**) Set before running **real**.exe, and this will create additional output files: wrflowinp d01, wrflowinp d02, ... Other namelists required in &time control: auxinput4 inname = "wrflowinp d<domain>" auxinput4 interval = 360, 360, io form auxinput4 = 2 (netCDF)

See 'Using sst update Option' in Chapter 5, User's Guide

Options for long simulations (2) (&physics)

	sst_skin	diurnal water temp update	
	tmn_update	deep soil temp update, used with lagday	
	lagday	averaging time in days	
	bucket_mm	bucket reset value for rainfall (e.g. rainc=i_rainc*bucket_mm+rainc)	
	bucket_j	bucket reset value for radiation fluxes	
RF	spec_exp	exponential multiplier for boundary zone ramping (set in <i>real, &bdy_control</i>). Usually used with wider boundary zone	
E.		Mesoscale & Microscale Meteorological Laboratory / NCAR	17

Adaptive time steps (2): an example

Adaptive time steps (1)

- Adaptive-time-step is a way to maximize the model time step while keeping the model numerically stable.
- Good to use for real-time run.
- May not work in combination with other options.

Also see 'Using Adaptive Time Stepping' section in Chapter 5, UG

Mesoscale & Microscale Meteorological Laboratory / NCAR 18

Mesoscale & Microscale Meteorological Laboratory / NCAR

20

___. . _ . .

Adaptive time steps (3)

use_adaptive_time_steplogical switchstep_to_output_timewhether to write at exact history output timestarget_cflmaximum cfl allowed (1.2)max_step_increase_pctpercentage of time step increase each time; set to 5, 51, 51 (larger value for nest)starting_time_stepin seconds; e.g. set to 4*DXmax_time_stepin seconds; e.g. set to 4*DXmin_time_stepin seconds; e.g. set to 4*DX	Namelist control: &domai	Ins <u>USE WITH CARE</u>				
target_cfloutput timestarget_cflmaximum cfl allowed (1.2)max_step_increase_pctpercentage of time step increase each time; set to 5, 51, 51 (larger value for nest)starting_time_stepin seconds; e.g. set to 4*DXmax_time_stepin seconds; e.g. set to 8*DX	<pre>use_adaptive_time_step</pre>	logical switch				
max_step_increase_pctpercentage of time step increase each time; set to 5, 51, 51 (larger value for nest)starting_time_stepin seconds; e.g. set to 4*DXmax_time_stepin seconds; e.g. set to 8*DX	<pre>step_to_output_time</pre>	5				
starting_time_stepin seconds; e.g. set to 8*DXmax_time_stepin seconds; e.g. set to 8*DX	target_cfl	maximum cfl allowed (1.2)				
<pre>max_time_step in seconds; e.g. set to 8*DX</pre>	<pre>max_step_increase_pct</pre>	each time; set to 5, 51, 51 (larger				
	<pre>starting_time_step</pre>	in seconds; e.g. set to 4*DX				
min_time_step in seconds; e.g. set to 4*DX	<pre>max_time_step</pre>	in seconds; e.g. set to 8*DX				
	min_time_step	in seconds; e.g. set to 4*DX				

Digital Filter Initialization (DFI) (1)

- DFI is a way to use a low-pass filter to improve model initial conditions
- Useful for short-range model runs (1-6 hours)
- · Imbalances in model IC
 - May be introduced by interpolation, different topography, or by objective analysis, and data assimilation
 - May generate spurious gravity waves in the early simulation hours, which could cause erroneous precipitation, numerical instability and degrade subsequent data assimilation

Mesoscale & Microscale Meteorological Laboratory / NCAR 21

Uniform
 Lenczos
 Hamming
 Dolph

Digital filter initialization (3)

Use of DFI helps to damp high pressure tendencies in early forecast

Digital filter initialization (2)

Using DFI

- can construct consistent model fields which do not exist in the initial conditions, e.g. vertical motion, cloud variables
- may reduce the spin-up problem in early simulation hours
- Useful for short-range (1-6 h) forecasts and cycling with data assimilation

DFI is done after program **real**, or dataassimilation step

Digital filter initialization (4)

Digital filter inilialization (5)

Namelist control: &dfi_control
 dfi_opt: dfi options: 0: no DFI; 1: DFL; 2: DDFI; 3:
 TDFI (recommended)
 dfi_nfilter: filter options 0 - 8, recommended: 7
 dfi_cutoff_seconds : cutoff period
 dfi_write_filtered_input : whether to write
 filtered IC
 dfi_bckstop_* : stop time for backward integration
 dfi_fwdstop_* : stop time for forward integration
 related namelists: examples.namelist
 To get pressure tendency data, set diag_print=1 or 2

Mesoscale & Microscale Meteorological Laboratory / NCAR

Automatic moving nest options

Tropical cyclone / typhoon / hurricane applications: (&domains)

vortex_interval: time interval when vortex location is estimated

max_vortex_speed: used to compute the search
radius for vortex location

corral_dist: how far the vortex can move near
the parent domain boundary (number of grids)
track_level: e.g. 700 or 500 mb

time_to_move: hold nests still until this time

See 'Moving Nested Run', Chap 5, UG

Mesoscale & Microscale Meteorological Laboratory / NCAR 27

Global application

Setup in WPS: map_proj = 'lat-lon'

e_we, e_sn: geogrid will compute dx, dy
See template 'namelist.wps.global'

Requires only one-time period data

In the model stage: (&dynamics)

fft_filter_lat: default value is 45 degrees
Caution: some options do not work, or have not
been tested with global domain. Start with
template 'namelist.input.global'

See 'Global Run' section, Chap 5, UG

Mesoscale & Microscale Meteorological Laboratory / NCAR 26

Tracer option

Add the following in &dynamics to activate tracer option (default no. is 8: with array names tr17_1, tr17_2, ..., tr17_8):

tracer_opt = 2,

One would need some way to initialize the tracer. A simple initialization can be found in program real (dyn_em/module_initialize_real.F)

Trajectory option

Add the following in *aphysics* to activate trajectory option:

traj_opt = 1,

And set the number of trajectories in &domains: num_traj = 1000, (default value)

<u>New in V3.9</u>: it can output meteorological variables, as well as chemistry ones, along the trajectories.

Mesoscale & Microscale Meteorological Laboratory / NCAR 32

Additional Output Option (1)

prec_acc_dt = 60.: in &physics

Output precipitation in a time interval (e.g. 60 min):

PREC_ACC_C, for convective rain PREC_ACC_NC, for explicit rain SNOW_ACC_NC, for explicit snow

(Caution: May not suitable for use in long runs)

WRF

Mesoscale & Microscale Meteorological Laboratory / NCAR 34

Stochastic parameterization schemes

This is a way to stochastically perturb forecasts (&stoch)

- **skebs:** = 1, activate the scheme
- nens: = N, an integer that controls the random number stream; a different integer will give a differently perturbed forecast perturb_bdy: = 1, use SKEB pattern; = 2, use user-provided pattern (new in 3.5)

sppt: = 1, activate stochastically parameterized pert tendencies

spp: = 1, activate stochastic perturbed parameters in physics

Also see 'Option to stochastically perturb forecasts' section in Chap 5, UG

Also see http://www.cgd.ucar.edu/~berner/skebs.html

Mesoscale & Microscale Meteorological Laboratory / NCAR 33

Additional Output Option (2a)

Since V3.4.1:
&diags
 p_lev_diag = 1.
 num_press_levels = 4,
 press_levels = 85000,70000,50000,20000

Output a few met fields on pressure levels : U_PL, V_PL, S_PL, T_PL, Q_PL, RH_PL, GHT_PL,

Output goes to auxiliary stream 23, so need to set

auxhist23 interval, frames per auxhist23

auxhist23_outname, io_form_auxhist23,

Additional Output Option (2b)

Since V3.7.1:
&diags
 z_lev_diag = 1.
 num_z_levels = 4,
 z_levels = 80,150,300,3000

Output a few met fields on pressure levels : U_ZL, V_ZL, S_ZL, T_ZL, Q_ZL, RH_ZL, GHT_ZL,

Output goes to auxiliary stream 23, so need to set auxhist23_outname, io_form_auxhist23, auxhist23_interval, frames_per_auxhist23

Mesoscale & Microscale Meteorological Laboratory / NCAR 36

Additional Output Option (4)

output_diagnostics = 1: (&time_control)
output max, min, time of max and min, mean
value, standard deviation of the mean for 8
surface variables (T2, Q2, TSK, U10, V10, 10 m
wind speed, RAINCV, and RAINNCV [time step
rain])

```
auxhist3_outname ="wrfxtrm_d<domain>_<date>"
io_form_auxhist3 = 2
auxhist3_interval = 1440, 1440,
frame_per_auxhist3 = 10, 10,
```

Additional Output Option (3)

Since V3.9: &diags diags_nwp = 1.

Output a few met fields on model levels : sealevelp, temperature, geoheight, pressure, umet, vmet, speed, dir, U10, V10, Q2, T2, RAIN, LIQRAIN, TPW, RH

Output goes to auxiliary stream 1, so need to set

auxhist1_outname, io_form_auxhist1,

auxhist1_interval, frames_per_auxhist1

Mesoscale & Microscale Meteorological Laboratory / NCAR 37

Additional Output Option (5)

nwp_diagnostics = 1: (&time_control)

Output max 10 m wind speed, max helicity in 2-5 km layer, max w in updraft and downdraft below 400 mb, mean w in 2-5 km layer, and max column graupel in a time window between history output times.

Data goes to history file.

Additional Output Option (6)

do_radar_ref = 1: (&physics)

Compute radar reflectivity using parameters used by different microphysics. Works for options mp_physics = 2,4,6,7,8,10,14,16. Option 9, NSSL mp also produce radar reflectivity output.

Data goes to history file.

Mesoscale & Microscale Meteorological Laboratory / NCAR 40

Additional Output Option (8)

afwa_*_opt = 1: (&afwa, with sub-options)

output over 60 diagnostic variables to history file (for example, MSLP, precipitable water, cloud cover, etc.)

See Registry/registry.afwa for full listing.

Data goes to history as well as auxhist2 file.

WRF

Additional Output Option (7)

do_avgflx_em = 1: (&dynamics)

output history-time-averaged, column-pressurecoupled u, v and w: AVGFLX_RUM, AVGFLX_RVM, AVGFLX_RVM

- useful for driving downstream transport model

Mesoscale & Microscale Meteorological Laboratory / NCAR 41

Additional Output Option (9)

More climate output (from RASM, new in V3.9): mean_diag = 1: (with interval options, &time_control)
diurnal_diag = 1

Output time-step and diurnal averaging of a number of surface variables and radiative fluxes at surface and top of atmosphere (e.g. monthly averages)

See run/README.rasm_diag for details, and Registry/registry.rasm_diag for full listing.

Data goes to auxhist5 and auxhist6 files.

IO quilting: &namelist_quilt

I/O quilting control:

nio_tasks_per_group (>0) : allow IO to be done
on separate processors. Performance improvement
for large domain runs. A value of 2 to 4 works well.

io_groups (>1): number of I/O streams that the quilting applies.

See 'Using IO Quilting' section, Chap 5, UG

Other ways to improve IO: 1) p-netCDF; 2) use netCDF4 compression option; 3) use io form history=102 to output patches of data

Mesoscale & Microscale Meteorological Laboratory / NCAR 44

Time Series Output (2)

- It also outputs profiles of U, V, Th, Qv, PH (levels set by max_ts_level, default 15): prefix.d<domain>.UU prefix.d<domain>.VV prefix.d<domain>.TH prefix.d<domain>.QV prefix.d<domain>.PH
- One file per location (e.g. at weather station), per domain.

Mesoscale & Microscale Meteorological Laboratory / NCAR 46

Time Series Output (1)

 It is a special output in text format with file name like

prefix.d<domain>.TS

• It outputs 14 surface variables at every time step:

e.g. 10 m u/v, 2 m T/qv, precipitation, radiation fluxes, surface fluxes

• One file per location (e.g. at weather station), per domain

Time Series Output (3)

- Not a namelist option to turn it on
- If output more than 5 locations, use namelist max_ts_locs in &domains
- Requires a file called 'tslist' present in working directory (a sample of the file is available in WRF/run/

#-											•#
#	24	characters	for	name		pfx	I	LAT	1	LON	
#-											- #
Cape Hallett hallt -72.330 170.250)						
Mo	Muı	do Station			I	mcm		-77.851		166.713	3

- This file provides a list of locations where you would like to output time series
- More information in **run/README.tslist** and 'Output Time Series' section, Chapter 5, UG

Mesoscale & Microscale Meteorological Laboratory / NCAR 47

Mesoscale & Microscale Meteorological Laboratory / NCAR 45

