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Introduction to WRF-Chem

WRF-Chem web site: https://ruc.noaa.gov/wrf/wrf-chem/
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WRF-Chem
• Chemistry is online, completely embedded within the WRF code 

infrastructure

• Consistent: all transport done by the meteorological model

• Same vertical and horizontal coordinates (no horizontal and vertical 

interpolation)

• Same physics parameterization for subgrid scale transport

• No interpolation in time

• Easy handling (Data management)

• Ideally suited to study feedbacks between chemistry and meteorology

• Ideally suited for tracer (e.g. dust, pollen) and air quality forecasting on 

regional to cloud resolving scales
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Some WRF-Chem facts and news

Ø WRF-Chem is a fully coupled meteorology-chemistry model.

Ø Current version of WRF-Chem (V4.1.3) contains multiple parameterizations to

simulate greenhouse gases, dust, fires, volcanoes, gas and aerosol chemistry

(ranging from simple to more complex schemes), photolysis, removal processes, 

meteorology-chemistry interactions and so on.

Ø Many national and international collaborators from NOAA, NCAR, PNNL, NASA, 

universities still contribute and support the WRF-Chem developments.

Ø Among the registered WRF users about 3000 have selected chemistry as their main 

area of interest.

Ø The WRF-Chem web-site has been updated (https://ruc.noaa.gov/wrf/wrf-chem/)

Ø The WRF-Chem discussions group has been set up to reach out to the large WRF-

Chem and air quality modeling community, to inform users about ongoing and future 

developments, new features and bug fixes in WRF-Chem:

https://list.woc.noaa.gov/cgi-bin/mailman/listinfo/wrf-chem-discussions

https://ruc.noaa.gov/wrf/wrf-chem/)
https://list.woc.noaa.gov/cgi-bin/mailman/listinfo/wrf-chem-discussions


Haagen-Smit Prize 2016 awarded to the WRF-Chem paper

The Executive Editors and the Publisher of Atmospheric Environment take great

pleasure in announcing the 2016 ‘‘Haagen-Smit Prize”, designed to recognize
outstanding papers published in Atmospheric Environment. The Prize is named in

honor of Prof. Arie Jan Haagen-Smit, a pioneer in the field of air pollution and one of

the first editors of the International Journal of Air Pollution, a predecessor to

Atmospheric Environment.

1238 citations (Google Scholar)



What is needed for this type of modeling system?
Ø Advection and diffusion (all done by WRF)

Ø Sub-grid scale transport (WRF parameterizations, PBL, convection)

Ø Some processes that are specific for chemical constituents, but need 
meteorology: emissions (biogenic, fire, sea salt, dust, volcanic, 
anthropogenic), dry deposition, wet scavenging

Ø Treatment of chemical reactions, aqueous phase chemistry, gas phase 
species and aerosols

Ø “Chemical” radiation routines (photolysis routines) that provide photolysis 
rates necessary for the gas chemistry schemes

Ø Capability of feedback from chemistry to meteorology (meteorological 
radiation and microphysics parameterizations, possibly also convective 
parameterizations)
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Ø Passive tracer options (chem_opt=13-15): no chemistry, transport only, 

anthropogenic or any other assigned emissions can be used

Ø Passive tracer options for greenhouse gases (chem_opt=16, 17): no chemistry, 

transport only, anthropogenic emissions and biospheric fluxes of CO2 and CH4

Ø You can run the chemistry options as passive tracer simulations by setting 

gaschem_onoff=0 in namelist.input

Ø In passive tracer type of simulation all the tracers are advected (chem_adv_opt in 

namelist.input), vertically mixed (vertmix_onoff) and also mixed by cumulus 

parameterization (chem_conv_tr)

Ø Passive tracer transport simulations are very useful to evaluate the transport and 

mixing of chemicals, emissions and for other tasks; Computationally very 

efficient!

Ø In WRF-Chem the meteorological and chemical variables share the same model 

grid and advection scheme
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The gas phase chemistry mechanisms in WRF-Chem

Ø Regional Acid Deposition Model, 2nd generation (RADM2)

Ø Regional Atmospheric Chemistry Mechanism (RACM)

Ø RACM - Mainz Isoprene Mechanism (RACM-MIM) 

Ø RACM - Earth  System Research Laboratory (RACM-ESRL)

Ø Carbon Bond mechanism (CB05)
Ø Carbon-Bond Mechanism version Z (CBMZ)

Ø Model of Ozone and Related Chemical Tracers (MOZART)

Ø Statewide Air Pollution Research Center (SAPRC99)
Ø Common Representative Intermediates Mechanism (CRIMech) 

different implementations, coupled to different aerosol schemes and 
aqueous chemistry, suitable for different applications ranging from regional 

air quality to global atmospheric chemistry simulations
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KPP in WRF-Chem
Kinetic PreProcessor (KPP) reads chemical reactions and rate constants from 
ASCII input files and automatically generates code for chemistry integration 
using the Rosenbrok solver

Advantages:
q less time consuming than manual coding
q less error prone
q numerically efficient
q flexibility in updating mechanism with additional species and equations
q suitable for adjoint code development 

References:
• Damian, V., et al. (2002), The kinetic preprocessor KPP - a software environment for solving chemical 
kinetics, Comput. Chem. Eng., 26(11), 1567-1579.
• Sandu, A., and R. Sander (2006), Technical note: Simulating chemical systems in Fortran90 and Matlab
with the Kinetic PreProcessor KPP-2.1, Atmos. Chem. Phys., 6, 187-195.
• Verwer, J., Spee, E., Blom, J. G., and Hunsdorfer, W. (1999), A second order Rosenbrock method 
applied to photochemical dispersion problems, SIAM Journal on Scientific Computing, 20, 1456–1480.
• www.mpch-mainz.mpg.de/~salzmann/my_home/sub/wkc.html

No KPP for aerosols!

http://www.mpch-mainz.mpg.de/~salzmann/my_home/sub/wkc.html


Madronich and Hodzic, WRF-Chem tutorial, 2017



Aerosol life cycle and processes
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WRF-Chem aerosol schemes

● An efficient aerosol scheme from the GOCART model
■ No size information for sulfate, BC, OC
■ Size information for dust and sea salt
■ No secondary organic aerosol (SOA)

● Modal Aerosol Dynamics Model for Europe – MADE
■ 3 log-normal modes
■ Inorganic, organic aerosols, SOA

● Model for Simulating Aerosol Interactions and Chemistry 
(MOSAIC)
■ Sectional aerosol scheme, 4 or 8 bins
■ Inorganic, organic aerosols, SOA

● MAM – Modal Aerosol Model from CAM5
■ 3 or 7 log-normal modes
■ Inorganic, organic aerosols, SOA, sea salt, BC, mineral dust

● Simple sectional (bin) scheme for volcanic ash aerosol



● Only total mass of aerosol compounds is known

● No information on
■ Particle number
■ Aerosol size distribution

Aerosol size distribution needs to be assumed for:
■ radiative transfer
■ response of cloud properties to aerosol number

● Numerically efficient
● Useful when focus is on complex gas phase chemistry e.g.

Bulk aerosol schemes

NH
3

H2SO
4

HNO
3

→ GOCART (+ size resolved dust and sea salt)



Modal aerosol schemes



Modal aerosol schemes

dN
dD

dN
dD

dN
dD

→ N = 8195 cm-3

μ = 18.22 nm
σ = 1.42

→ N = 12732 cm-3

μ = 68.44 nm
σ = 1.57

→ N = 3140 cm-3

μ = 164.41 nm
σ = 1.28



Modal aerosol schemes
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Modal aerosol schemes

→ MADE and MAM



Sectional aerosol schemes
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→ MOSAIC, volcanic ash, 
(GOCART)
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Xing et al. (ACP, 2016) – A global climatology of O3/PV ratios:

WRF-Chem Stratospheric 
Tracers:

1) IC/BC O3 above 500 mb
from O3/PV 

2) O3/PV = 100 – upper 
limit

Parameterization of O3 boundary conditions according to Potential 
Vorticity (PV)

!" = $
% &×)⃗ + +,-.,/.0 ⋅ &2 1 PV unit = 10-6⋅∘K⋅m2/kg-s

45 ∝ 78Danielsen (1968): In stratospheric folds and cut-off lows
Literature values: O3/PV from 35 to 130 ppbv/PVU

• 21 years of data (1990-2010)
• WRF with NCEP reanalysis nudging
• 44 O3 sonde locations from WOUDC
• Latitude, Month, Pressure dependent

July

Courtesy of Stu McKeen (NOAA/ESRL)
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Diagnostics option for the aerosol-radiation feedback 
within the radiation driver of WRF-Chem V4 (clean_atm_diag namelist option)

26

Archer-Nicholls S. et al.,
ACP, 16, 5573–5594, 2016
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J.Fast (PNNL) 



Coupling Aerosols and Parameterized Convection For 
“Large” Dx

from Jerome Fast (PNNL)
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New KF-CuP Chemistry package
cu_opt=10 (KF+CuP), chem_opt=203 (SAPRC+MOSAIC)
Modified Kain-Fritsch (deep convection) coupled with 
Cumulus Potential (CuP) (shallow convection) – both cloud 
types affect radiation
Aerosol activation
Transport
Aqueous chemistry
Wet removal

Not Included Yet:
Feedbacks to radiation, precipitation, etc.

Cloud-aerosol interactions are a source of 
uncertainty in climate simulations, but most 

convective parameterizations lack these 
processes

Berg et al., 
GMD, 2015

in 
parameterized 

clouds

Studies using KF-CuP:
Fast et al., JGR, 2016

Raut et al., ACPD, 2017
Marelle et al., GMDD, 2017
Thomas et al., GRL, 2017



Wet removal for the MOZART based chemistry options in WRF-Chem3.9

Bela et al., JGR, 2016



Not currently planned for upcoming releases:
• Secondary Activation: Permitting activation above cloud base, shown to be 

significant for deep convection (Yang et al. JGR 2015) 
• Ice-Borne Aerosols (Yang et al., JGR 2015)
• Explicit Nucleation and Ultrafine Particles: 20-size bin version of MOSAIC, 1 

nm – 10 µm (Lupascu et al., ACP 2015)
• Secondary Organic Aerosol: Isoprene epoxydiol (IEPOX) and other explicit 

biogenic chemistry (Shrivastava et al., in preparation)
• Cloud-Aerosol Interactions with Spectral Bin Microphysics: Coupling of 

MOSAIC aerosol model with spectral bin microphysics for cloud-resolving 
scales (Gao et al. JAMES, 2016)

WRF-Chem Developments by PNNL (Not in Public Version)
Fast J. et al.

(available upon request)



Simulating aerosol-meteorology feedback by using 
the modal aeosol scheme in WRF-Chem 

• The chemistry option (#109, since V3.8) with secondary organic aerosol

parameterization based on the volatility basis set approach, with direct and

indirect cloud feedback, evaluated in Europe with data from a field campaign 

(Tuccella et al., GMD, 2015)

The 17–19 May 2008 averages of droplet effective radius at cloud top (first row), retrieved using MODIS-aqua observations 
(first column), predicted by model in the references run (CTRL, second columns) and sensitivity test without SOA (NOSOA, third 

column).



Updates in the WRF-Chem model in recent years

Ø Potential Vorticity based stratospheric ozone calculation (NOAA/ESRL)

Ø An updated version of the Model for Simulating Aerosol Interactions and Chemistry scheme 

(MOSAIC II) (PNNL)

Ø An updated gas phase chemistry scheme Model for Ozone and Related Tracers (MOZART) 

version T1 from (NCAR/ACOM) 

Ø A new heterogeneous gas chemistry (based on the Regional Atmospheric Chemistry 

Mechanism) option coupled with the ISORROPIA II aerosol thermodynamic model (Hong Kong 

Polytechnic University)

Ø A Henry's Law Constant table to use the same constants across different chemistry 

parameterizations, e.g. dry/wet deposition schemes (NCAR)

Ø An integrated reaction rate diagnostics option (NCAR)

Ø Diagnostics for WRF-Chem aerosol-radiation feedback in the radiation driver (Universities of 

Cambridge and Manchester)

Ø A number of minor bug fixes and enhancements;



WRF-Chem applications
some examples
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Smoke forecasting using Rapid Refresh and High Resolution Rapid 
Refresh models (based on WRF-Chem)

RAP-Smoke (13.5 km resolution)

HRRR-Smoke (3 km resolution)

https://rapidrefresh.noaa.gov/RAPsmoke/
https://rapidrefresh.noaa.gov/hrrr/HRRRsmoke/   



• Application of WRF-Chem in air quality modeling.
• A high-resolution (~500m) dust source function is 

used to simulate dust emission and transport from 
Tigris-Euphrates region across the Arabian 
Peninsula.

• ECMWF operational analysis (~15km) used as 
boundary conditions.

• WRF-Chem simulated DOD is consistent with several 
other datasets.

• Atmospheric dust originating from the Tigris-Euphrates 
basin alone exceeds the PM10 standards in several 
downwind cities.

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JD030248

Dust modeling for Middle East by WRF-Chem

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JD030248
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New diagnostic schemes/options in WRF-Chem (NCAR/ACOM)
Using WRF-Chem to study the role of different VOCs in Ozone Production

• Integrated Reaction Rate Analysis (IRR): 3D output of  
individual gas phase reaction rates  

• Chemical Tendencies: difference in concentrations  
before and after certain processes are called in model

• Online Trajectories: Model output along online forward 
trajectories released at user defined location and time
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Pfister et al., Chemical Characteristics and Ozone Production in the Colorado Front Range, 2019



Delhi Air Quality Forecasting System
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Fully coupled meteorology-chemistry forecasting system based on WRF-Chem

https://ews.tropmet.res.in/)

https://ews.tropmet.res.in/


WRF-Chem coupling with the ocean 
model (ROMS) (He et al., 2018)

WRF ROMS

net heat flux and 
wind stress
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2010) developed by US Woods Hole 
Coastal and Marine Science Center



Ozone chemistry schemes in WRF-Chem

Website: http://mcm.leeds.ac.uk/MCM/
Bloss, C., et al (2005). ACP, doi: 10.5194/acp-5-641-2005
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• VOC and NOx photochemistry drives 
Ozone formation (and other 
processes) in troposphere.

• Many 1000’s of VOCs identified in the 
atmosphere.

• Near-explicit schemes too complex 
e.g. Master Chemical Mechanism, 
MCMv3.1: 4361 species, 12,775 
reactions.

• Need to parameterise tropospheric 
chemistry in 3D models. But how can 
we be confident the necessary 
simplifications preserve key 
processes?

http://mcm.leeds.ac.uk/MCM/


Common Representative Intermediates (CRI) Mechanism
the most complex gas chemistry scheme in WRF-Chem

• “Intermediate complexity” scheme, 
conserving ozone forming 
potential from MCM v3.1.

• Oxidation products lumped based 
on ‘CRI index’: number of C-C and 
C-H bonds in each molecule. 

– CRIv2 = 434 species, 1183 
reactions; (Jenkin et al., 
2008).

• Further reductions in complexity 
achieved by lumping emitted 
VOCs (Watson et al., 2008):

– CRIv2-R5 in WRF-Chem:

196 species, 555 reactions. 

Website: http://mcm.leeds.ac.uk/CRI/
Bloss, C., et al (2005). ACP, doi: 10.5194/acp-5-641-2005

http://mcm.leeds.ac.uk/CRI/


Air Quality Forecasting for UK: ManUniCast

http://manunicast.seaes.manchester.ac.uk

• Meteorology & AQ teaching tool
• Daily forecasts

• CRIv2-R5 & 8-bin MOSAIC
• 12 x 12 km resolution
• Maps & Meteograms
• Chemical Outputs:
• 13 gas-phase components
• Speciated PM10, PM2.5, PM1 

aerosol

http://manunicast.seaes.manchester.ac.uk/


Dublin Pollution Events: Solid Fuel

Emission Factors (kg PM2.5/TJ)  & 
Calorific Values  (MJ/kg) => PM 
released per kg fuel consumed 

Houses/m2 (CSO) => PM released/m2

Assume houses burn 10kg fuel per 
night. Temperature dependent 
enhancement factor
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Adjustment of the anthropogenic emissions for Dublin
by WRF-Chem according to air temperature 



Small-scale dispersion of ultrafine particles from traffic in 
London (WRF-Chem) by University of Birmingham

(a) Total UFP number 
concentration (# cm-3) 

evaporati
on

m
ix
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(c) Total (gas + particle) SVOCs 
concentrations at roof top level.

(b) UFP number-size distribution dN/dlog(Dp) (# cm-3)

(RU) site

(MR) Marylebone

20m resolution



Community Emissions Data System (CEDS)
Rachael Hoesly, Steve Smith et al., 2017, GMDD.

U. Maryland/PNNL’s Joint Global Change Research Institute 

Based on HTAP-2010
Basis for CMIP modeling projects

Current configuration:
0.5 X 0.5 degree horizontal resolution

Global monthly emissions from 1750 to 2014
Anthropogenic BC, OC, and other Aerosol

26 VOC species
NOx, SO2, CO, NH3, CO2, CH4

Nine Energy/Use Categories

New Anthropogenic Global Emission Inventory
(For use with prep_chem_sources package)

HTAP-2010 CEDS-2014

Primary Organic Carbon Emissions
Available for WRF-Chem

• GOCART aerosol (currently)

• CEDS (2014) datasets

• Modified prep_chem_sources

• Contact: Stu McKeen



Concluding remarks
• Check out WRF-Chem references to know who is working on what, what should be 

cited, and maybe where to get additional help if needed. 
• We recommend all the users signing up to the WRF-Chem discussions email group 

(forum).
• Also, please send us info on your peer reviewed WRF-Chem publications.
• For more details about WRF-Chem check the user’s guides and tutorial 

presentations: https://ruc.noaa.gov/wrf/wrf-chem/tutorial2017.htm

WRF-Chem info on the WEB:
Ø WRF-Chem web-page: https://ruc.noaa.gov/wrf/wrf-chem/
Ø WRF and WRF-Chem user forums: 

http://forum.mmm.ucar.edu/phpBB3/index.php
Ø WRF-Chem discussions: https://list.woc.noaa.gov/cgi-bin/mailman/listinfo/wrf-chem-

discussions/
Ø Publications: https://ruc.noaa.gov/wrf/wrf-chem/References/WRF-

Chem.references.htm

For questions contact us at wrfchemhelp.gsd@noaa.gov

https://ruc.noaa.gov/wrf/wrf-chem/tutorial2017.htm
https://ruc.noaa.gov/wrf/wrf-chem/
http://forum.mmm.ucar.edu/phpBB3/index.php
https://list.woc.noaa.gov/cgi-bin/mailman/listinfo/wrf-chem-discussions/
https://ruc.noaa.gov/wrf/wrf-chem/References/WRF-Chem.references.htm


A list of recent global inventories

Author Acronym Reference or Website Years Resolution 
 

Lamarque et al. ACCMIP eccad.sedoo.fr 1900-2000 0.5x0.5 
Riahi et al. RCPs eccad.sedoo.fr 2000-2100 0.5x0.5 
Granier et al. MACCity eccad.sedoo.fr 2000-2015 0.5x0.5 
Maenhout et al. EDGAR4.2 edgar.jrc.ec.europa.eu 1970-2008 0.1x0.1 
Crippa et al. EDGAR4.3 edgar.jrc.ec.europa.eu 1970, 2010 0.1x0.1 
Maenhout et al. HTAPv2 edgar.jrc.ec.europa.eu 2008, 2010 0.1x0.1 
Klimont et al. ECLIPSE 

v4, v5 
iiasa.ac.at 1990-2030 0.5x0.5 

Schultz et al. RETRO juelich ftp 1960-2000 0.5x0.5 
Bond et al. Bond Hiwater.org 1850-2000 country 
Junker&Liousse J&L eccad.sedoo.fr 1860-2003 1x1 
Huang Y. et al. PKU inventory.pku.edu.cn 1960-2009 0.1x0.1 
Smith et al. PNNL sedac.ciesin.columbia.edu 1850-2005 1x1 
!

All the data are publicly available. Most available at: eccad.sedoo.fr, the 
database of the Global Emissions InitiAtive (GEIA)

Blue: inventories providing just a few species


