Running the WRF Preprocessing System

Michael Duda

Winter WRF Tutorial 27 – 31 January 2020

Overview

- How to run through the WPS for a single-domain case
 - Basic steps for running the WPS
 - Geogrid
 - Ungrib
 - Metgrid
- WPS utility programs
- Common WPS mistakes

STEP 1: Edit namelist.wps

For geogrid, only the <u>&share</u> and <u>&geogrid</u> namelists need to be edited in namelist.wps

&share

```
wrf_core = 'ARW'
max_dom = 1
```

&geogrid

 $map_proj = 'lambert'$ truelat1 = 45.0 truelat2 = 30.0 $stand_lon = -105.25$ $ref_lat = 40.0$ $ref_lon = -105.25$ $e_we = 220$ $e_sn = 175$ dx = 15000 dy = 15000 $geog_data_res = 'default'$ $geog_data_path = '/data/static/geog/'$

STEP 1: Edit namelist.wps

STEP 1: Edit namelist.wps

&geogrid

Map projection: What projection to use? What are the parameters of the projection?

See p. 3–9 and 3–40

STEP 1: Edit namelist.wps

&geogrid **Domain location**: Where on Earth is the center of the ref lat = 40.0domain? = -105.25ref_lon **Domain size**: How many = 220e we grid points does the = 175e sn domain have? What is the dx = 15000grid spacing? dy = 15000= 'default' Static data: What resolution geog_data_res geog_data_path = '/data/static/geog/' of source data to interpolate from for each

domain? Where to find data

on the filesystem?

(See "Extra slides"...)

Geogrid processes each

<u>STEP 2</u>: Run geogrid.exe

domain individually. Parsed 11 entries in GEOGRID. TBL Processing domain 1 of 1 There will be one section Processing XLAT and XLONG of messages for each Processing MAPFAC domain. Processing F and E Processing ROTANG Processing LANDUSEF As each field is Calculating landmask from LANDUSEF processed, a message Processing HGT M will be written to the ... screen and to the geogrid.log file. Successful completion of geogrid.

STEP 3: Check that geogrid ran successfully

If geogrid ran sucessfully, this message should be printed:

If there was an error, check for an ERROR or WARNING message in the geogrid.log file, or for a system error, like "Segmentation fault".

STEP 1: Edit namelist.wps

For ungrib, only the <u>&share</u> and <u>&ungrib</u> namelists need to be edited

```
&share

wrf_core = 'ARW'

max_dom = 1

start_date = '2006-04-01_00:00:00'

end_date = '2006-04-01_12:00:00'

interval_seconds = 21600

/
```


STEP 1: Edit namelist.wps

See p. 3–14, and 3–38

STEP 1: Edit namelist.wps

<u>STEP 2</u>: Link the correct Vtable to the file name "Vtable" in the run directory

- Some Vtables are provided with WPS in the WPS/ungrib/Variable_Tables directory
 - E.g., Vtable.GFS, Vtable.SST, Vtable.ECMWF

Ungrib always expects to find a file named
 Vtable in the run directory

> In -s ungrib/Variable_Tables/Vtable.GFS Vtable

> Is Vtable

Vtable -> ungrib/Variable_Tables/Vtable.GFS

<u>STEP 3</u>: Link GRIB files to the correct file names in the run directory

- Ungrib always expects GRIB files to be named GRIBFILE.AAA, GRIBFILE.AAB, GRIBFILE.AAC, etc., in the run directory
- The link_grib.csh script can be used to link GRIB files to these file names:

> link_grib.csh /data/GRIB/GFS/gfs*

> Is GRIBFILE.*

GRIBFILE.AAA -> /data/GRIB/GFS/gfs_060401_00_00

2

STEP 4: Run ungrib.exe

*** Starting program ungrib.exe *** Start date = $2006-08-16_{12}:00:00$, output format is WPS Path to intermediate files is ./ ungrib - grib edition num

End date = 2006-08-16 12:00:00

**** Inventory for date = 2006-08-16 12:00:00

PRES	TT	טט	vv	RH	HGT	
2013.0	0	0	 0	0	0	0
2001.0	х	х	x	x	0	х
1000.0	х	x	X	x	X	
975.0	x	x	X	x	X	
950.0	Х	X	X	X	Х	
925.0	Х	х	X	X	x	
900.0	х	Х	X	X	X	

STEP 5: Check that ungrib ran successfully

If ungrib ran successfully, this message should be printed:

If there was an error, check for error message in ungrib's printout or in the ungrid.log file.

Common errors are related to incorrect date specifications in the &share namelist, or because GRIB2 data was used with a version of WPS compiled without GRIB2 libraries.

Winter WRF Tutorial 27 - 31 January 2020, Boulder

STEP 1: Edit namelist.wps

For metgrid, only the <u>&share</u> and <u>&metgrid</u> namelists need to be edited

&share

```
wrf_core = 'ARW'
max_dom = 1
start_date = '2006-04-01_00:00:00'
end_date = '2006-04-01_12:00:00'
interval_seconds = 21600
```

&metgrid

fg_name = 'GFS' constants_name = 'SST:2006-04-01_00'

STEP 1: Edit namelist.wps

See p. 3-17, and 3-41

Fields from constant files (given using constants_name) are processed before any time varying fields.

Metgrid processes all time period for one domain before processing for the next domain

STEP 3: Check that metgrid ran successfully

If metgrid ran successfully, this message should be printed:

If there was an error, check for an ERROR or WARNING message in the metgrid.log file, or for a system error, like "Segmentation fault".

Winter WRF Tutorial 27 - 31 January 2020, Boulder

Overview

- How to run through the WPS for basic cases
 - Basic steps for running WPS
 - Geogrid
 - Ungrib
 - Metgrid
- WPS utility programs
- Common WPS mistakes

WPS Utility Programs

- Besides geogrid, ungrib, and metgrid, some simple utility programs are distributed with WPS:
 - For checking contents of intermediate format files
 - For listing contents of GRIB1 & GRIB2 files
 - To assist in locating domains
 - For computing 3d pressure field for ECMWF data
- Some programs use NCAR Graphics libraries for plotting
 - For these utilities, *NCAR Graphics must be installed*

Utility: plotgrids.ncl

The *plotgrids.ncl* script plots the locations of grids defined in *namelist.wps*

- plotgrids can be used to iteratively refine the locations of grids.
- *plotgrids.ncl* uses the namelist.wps file only, so there is no need to run geogrid first!

Utility: rd_intermediate

The rd_intermediate lists information about the fields found in an intermediate-format file

```
FIELD = TT
UNITS = K DESCRIPTION = Temperature
DATE = 2000-01-24_12:00:00 FCST = 0.000000
SOURCE = unknown model from NCEP GRID 212
LEVEL = 200100.000000
I,J DIMS = 185, 129
IPROJ = 1
REF_X, REF_Y = 1.000000, 1.000000
REF_LAT, REF_LON = 12.190000, -133.459000
DX, DY = 40.635250, 40.635250
TRUELAT1 = 25.000002
DATA(1,1)=295.910950
```

Utility: int2nc + plotfmt_nc.ncl

The int2nc program converts an ungrib intermediate file to a standard NetCDF file

Users may then visualize fields with ncview, NCL, or other graphical packages:

Visualize NetCDF intermediate fields using plotfmt_nc.ncl script

Visualize NetCDF intermediate fields using ncview

Utility: g1print and g2print

The *g1print* and *g2print* programs list the contents of a GRIB1 or GRIB2 file:

rec num	Prod Disc	Cat	Param num	Lvl code	Lvl one	Lvl two	Name	Time	Fcst hour
1	0	3	5	100	100000	0	HGT	2006-08-16 12:00:00	00
2	0	3	5	100	97500	0	HGT	2006-08-16_12:00:00	00
3	0	3	5	100	95000	0	HGT	2006-08-16_12:00:00	00
4	0	3	5	100	92500	0	HGT	2006-08-16_12:00:00	00
5	0	3	5	100	90000	0	HGT	2006-08-16_12:00:00	00
6	0	3	5	100	85000	0	HGT	2006-08-16_12:00:00	00
7	0	3	5	100	80000	0	HGT	2006-08-16_12:00:00	00
8	0	3	5	100	75000	0	HGT	2006-08-16_12:00:00	00
9	0	3	5	100	70000	0	HGT	2006-08-16_12:00:00	00
10	0	3	5	100	65000	0	HGT	2006-08-16_12:00:00	00

Utility: calc_ecmwf_p

The *calc_ecmwf_p* utility creates intermediate files with a pressure (and possibly GHT and RH) field

Overview

- How to run through the WPS for basic cases
 - Basic steps for running WPS
 - Geogrid
 - Ungrib
 - Metgrid
- WPS utility programs
- Common WPS mistakes

Common WPS Mistakes

1) All 3-d fields must have same number of levels in metgrid

WRF_DEBUG: Warning DIM 4 , NAME num_metgrid_levels REDIFINED by var GHT 27 26 in wrf_io.F90 line 2347 ERROR: Error in ext_pkg_write_field

- This is usually corrected by ensuring that all 3-d meteorological fields have surface level data

- Try setting debug_level=1000 in &share namelist, and checking metgrid.log for a table showing which fields are available at each level

Common WPS Mistakes

- 2) When using a regional data set (e.g., NAM), ensure that model domain is completely covered by the data
 - The metgrid program will stop if the model domain has grid points that are not covered by data
- 3) For native vertical coordinate data sets (e.g., RUCb, ECMWF), ensure that both pressure and geopotential height fields are available

Questions?

Extra slides

Choosing Static Datasets

WPS v3.9 supports several land cover datasets and two different topography datasets

Land use:

- USGS 24-class, 30-arc-second resolution
- USGS 24-class + inland water, 30-arc-second resolution
- MODIS 20-class, 30- and 15-arc-second resolution
- MODIS 20-class + inland water, 30-arc-second resolution
- NLCD 2011 40-class, 9-arc-second resolution

<u>Terrain</u>:

- GTOPO30
- GMTED2010

Choosing Static Datasets

Selection of alternate static datasets is performed using the geog_data_res namelist option in the &geogrid record

Prefix the usual geog_data_res selection with the name for the land use or topography dataset to be used.

E.g.,

```
geog_data_res = 'nlcd2011_9s+default'
```

to use NLCD 2011 9-arc-second land cover, and default resolution for other static fields.

Global Land Cover Datasets

Consider an example 1-km domain centered over Beijing:

USGS 30-arc-second resolution, from ~1993 data; select using 'usgs_30s' MODIS 30-arc-second resolution, from 2001(?) data; the MODIS data are used by default

MODIS 15-arc-second resolution, most prevalent category between 2001 and 2010; select using 'modis_15s'

Identifying Inland Water Bodies

Two land cover datasets also provide a special category to identify "inland water bodies", which can sometimes require special treatment, e.g., when initializing SST field or running the lake model in WRF.

MODIS 30-arc-second:

- Selected using 'modis_lakes'
 USGS 30-arc-second:
- Selected using 'usgs_lakes'

We'll discuss the use of lake categories for initializing the SST field in the "WPS Advanced Features" talk on Wednesday.

NLCD Land Use (Continental U.S. Only)

For the WRF domains over the Continental U.S., one can use highresolution land cover from the National Land Cover Database (NLCD).

NLCD 2011 9-arc-second:

Selected using 'nlcd2011_9s'

Besides high spatial resolution, the NLCD data provides four new urban categories:

- 1. Developed Open Space
- 2. Developed Low Intensity
- 3. Developed Medium Intensity
- 4. Developed High Intensity

NLCD Land Use (Continental U.S. Only)

For the WRF domains over the Continental U.S., one can use highresolution land cover from the National Land Cover Database (NLCD).

Above: (left) A 250-m WRF domain covering San Francisco Bay using MODIS 15-arc-second land cover data; (right) the same domain using NLCD 2011 9-arc-second data.

Winter WRF Tutorial 27 - 31 January 2020, Boulder

GMTED2010 Terrain

WPS v3.8 and newer replace the GTOPO30 dataset with a newer, more accurate terrain dataset from the USGS: GMTED2010^{*}.

Left: Terrain elevation difference in meters (GMTED2010 minus GTOPO30). Note that the scale does not cover the full range of the differences.

