

WRF: More Runtime Options

Wei Wang January 2020

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

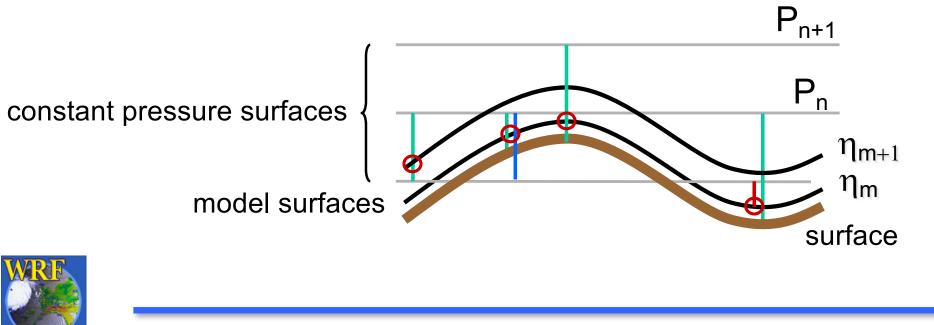
Mesoscale & Microscale Meteorological Laboratory / NCAR 1

More options

- Some useful *runtime* options:
 - Vertical interpolation options (program real.exe, &domains)
 - Base state parameters (*real.exe*, &dynamics)
 - Options to use hybrid vertical coordinate (*real.exe*, &dynamics)
 - Defining vertical model levels (real.exe, &domains)
 - IO options (<u>&time_control</u>)
 - Physics suites (&physics)
 - Options for long simulations (&physics)
 - Adaptive-time step (&domains)
 - Digital filter (&dfi_control)
 - Global runs (&dynamics)
 - Moving nest (&domains)
 - Tracer (&dynamics) / trajectory (&physics, &domains)
 - Stochastic parameterization schemes (&stoch)
 - Optional output (various)
 - IO quilting (&namelist_quilt)
- Time series output (surface and profile)

namelist.input

general namelist records:	specialized namelist records:	
<pre>&time_control</pre>	&dfi_control	
&domains	&fdda	
&physics	&stoch	
&dynamics	&diags	
<pre>&bdy_control</pre>	&scm	
<pre>&namelist_quilt</pre>	&tc	
	&noah_mp	



Look for these in examples.namelist

Vertical interpolation options (1)

Program **real** only, &domains:

interp_type: in pressure or log pressure
lagrange_order: linear or quadratic
use_surface: whether to use surface level data

Vertical interpolation options (2)

Program real only, & domains:

- use_levels_below_ground: whether to use data below the
 ground
- lowest_lev_from_sfc:logical, whether surface data is used to
 fill the lowest model level values
- force_sfc_in_vinterp: number of levels to use surface
 data, default is 1
- extrap_type: how to do extrapolation: 1 use 2 lowest levels; 2 - constant
- t_extrap_type : extrapolation option for temperature: 1 isothermal; 2 - 6.5 K/km; 3 - adiabatic

Look for these in **examples.namelist**

Base State Parameters

The following could be varied (program *real*, &dynamics):

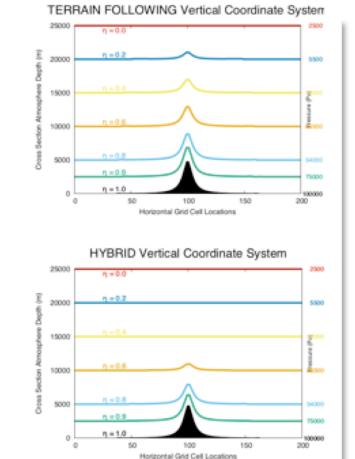
base_temp
iso_temp

Height

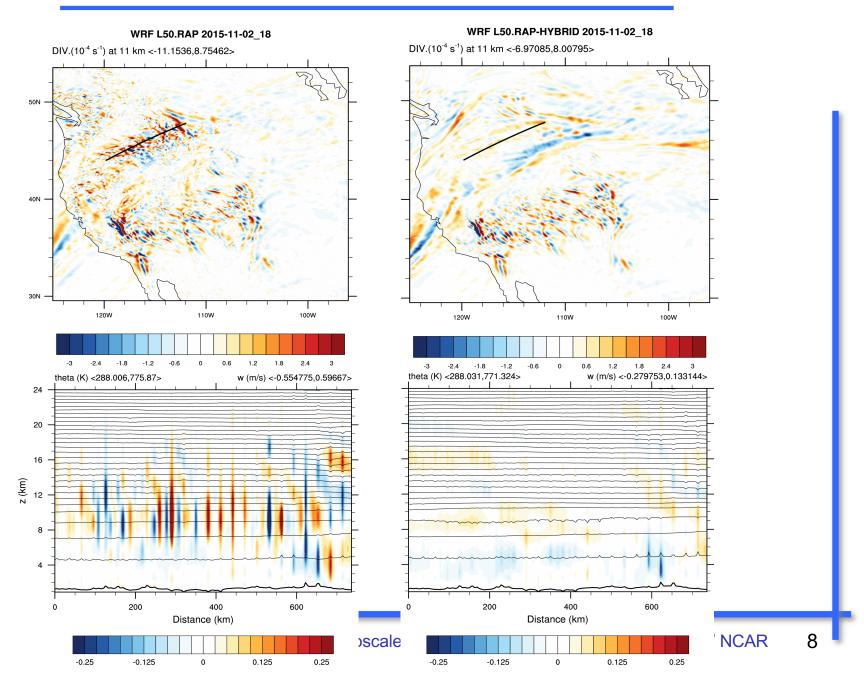
Base state surface temperature Base state stratosphere temperature (default 200 K)

base_pres_strat

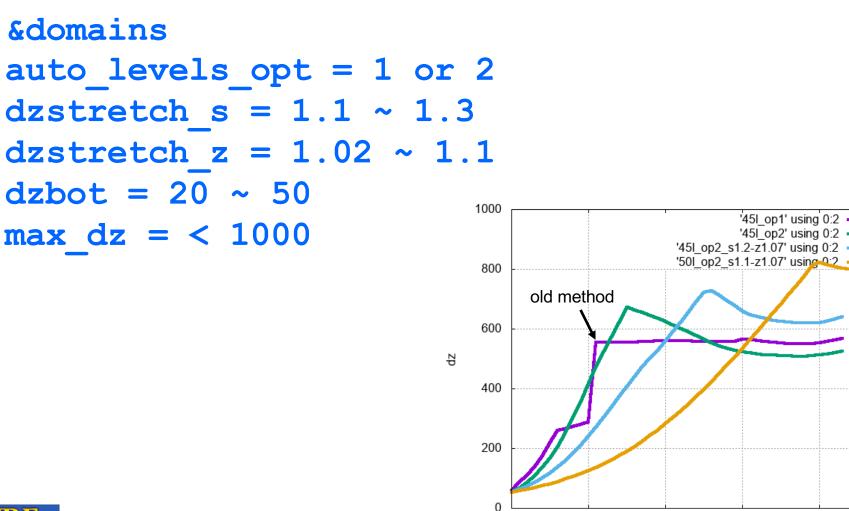
I _{ref}


tratPressure at which thestratosphere temperature lapserate changes (since 3.6.1)

Help to improve simulations when model top is higher than 20 km (~ 50 mb)


Hybrid Vertical Coordinate Option

- Decision made when running program real.exe, by setting these namelists in &dynamics hybrid_opt = 2 (0 turns it off) eta_c = 0.2 (default)
- New since V3.9
- Default in V4.0



Hybrid Vertical Coordinate Options

Defining Vertical Levels

levels

IO Control (1)

History output control in &time_control

history_interval: history_interval_h: history_interval_s: history_begin_h: history_begin_d: used often, unit in <u>minutes</u> history output interval in hours history output interval in seconds history output beginning time in hours history output beginning time in days

Look for the list in **Registry/registry.io_boilerplate**

IO Control (2)

Specify input and output files explicitly in &time_control

auxinput1_inname = "/mydata/met_em.d<domain>.<date>"
 : explicitly specify input file (it name and directory)
history_outname = "/mydata/wrfout_d<domain>_<date>"
 : explicitly specify history output file (its name and directory)

Look for these in Registry/registry.io_boilerplate

IO Control (3)

Optional history output in **&time_control**

1. Change Registry.EM and recompile: state integer rainc ij misc 1 - h03 "RAINC" "" "ACCUMULATED TOTAL CUMULUS PRECIPITATION" state integer rainnc ij misc 1 - h03 "RAINC" "" "ACCUMULATED TOTAL GRID SCALE PRECIPITATION"

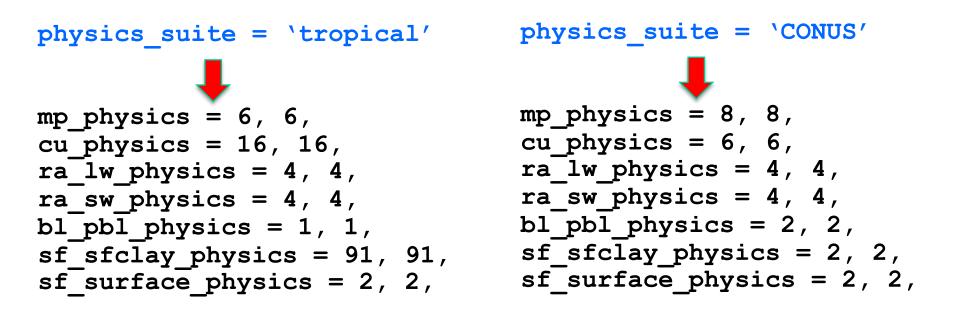
2. Edit namelist.input to output these variables: auxhist3_outname = "rainfall_d<domain>" auxhist3_interval = 10, 10, frames_per_auxhist3 = 1000, 1000,

IO Control (4)

Starting in V3.2, there is an alternative to add/remove output fields at **runtime** (state variables in Registry only)

1. namelists in &time_control:

iofields_filename(max_dom) = 'my_output.txt',
ignore_iofields_warning = .true.


- 2. prepare a text file ('my_output.txt') to select io fields:
 +:h:3:rainc, rainnc ← syntax in the file
- 3. set other namelists under &time_control:
 auxhist3_outname = "rainfall_d<domain>"
 auxhist3_interval = 10, 10,
 frames_per_auxhist3 = 1000, 1000,

io_form_auxhist3 = 2
See 'Run-Time IO' section in Chapter 5, User's Guide

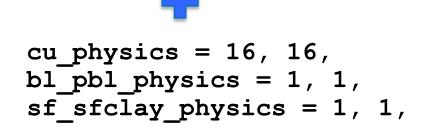
Use of physics suite

Since 3.9, physics can be selected as a suite. These represent well-tested physics (&physics).

* Note other configuration choices can have an impact on model results

Use of physics suite

To turn an option off for a particular domain:


To overwrite one or more with other options:

physics_suite = `tropical'

$$cu_physics = -1, 0,$$

physics_suite = `CONUS'

Options for long simulations (1)

Update control for lower boundary fields: allow SST, seaice, monthly vegetation fraction and albedo to be updated regularly during a model run:

```
sst_update: 0 - no update
                1 - update all above fields (in &physics)
Set before running real.exe, and this will create additional output
    files: wrflowinp_d01, wrflowinp_d02, ..
Other namelists required in &time_control:
    auxinput4_inname = "wrflowinp_d<domain>"
    auxinput4_interval = 360, 360,
    io_form_auxinput4 = 2 (netCDF)
```

See 'Using sst_update Option' in Chapter 5, User's Guide

Options for long simulations (2) (&physics)

sst_skin diurnal water temp update

tmn_update deep soil temp update, used with lagday

lagday averaging time in days

bucket_mm b

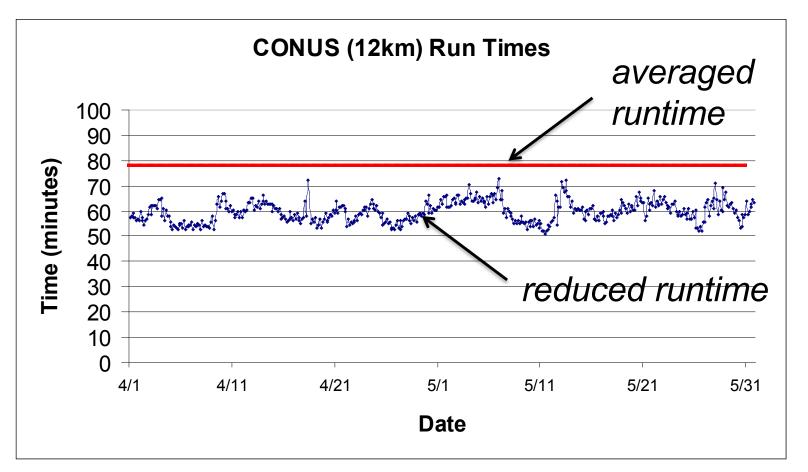
bucket reset value for rainfall
(e.g. rainc=i rainc*bucket mm+rainc)

bucket reset value for radiation fluxes

spec_exp

bucket j

WRF

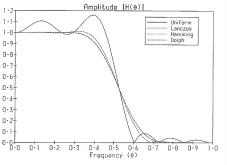

exponential multiplier for boundary zone ramping (set in *real, &bdy_control*). Usually used with wider boundary zone Adaptive time steps (1)

- Adaptive-time-step is a way to maximize the model time step while keeping the model numerically stable.
- Good to use for real-time run.
- May not work in combination with other options.

Also see 'Using Adaptive Time Stepping' section in Chapter 5, UG

Adaptive time steps (2): an example

On average, forecasts finish in 60 min (50-73min) as compared to 79 min standard runtime


Adaptive time steps (3)

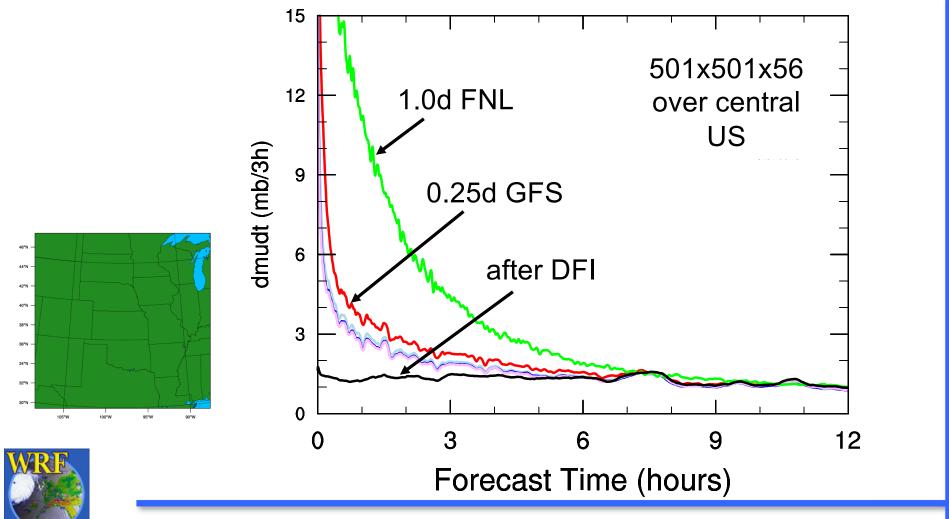
Namelist control: &domai	Ins USE WITH CARE
use_adaptive_time_step	logical switch
<pre>step_to_output_time</pre>	whether to write at exact history output times
<pre>target_cfl</pre>	maximum cfl allowed (1.2)
<pre>max_step_increase_pct</pre>	percentage of time step increase each time; set to 5, 51, 51 (larger value for nest)
<pre>starting_time_step</pre>	in seconds; e.g. set to 4*DX
max_time_step	in seconds; e.g. set to 8*DX
min_time_step	in seconds; e.g. set to 4*DX

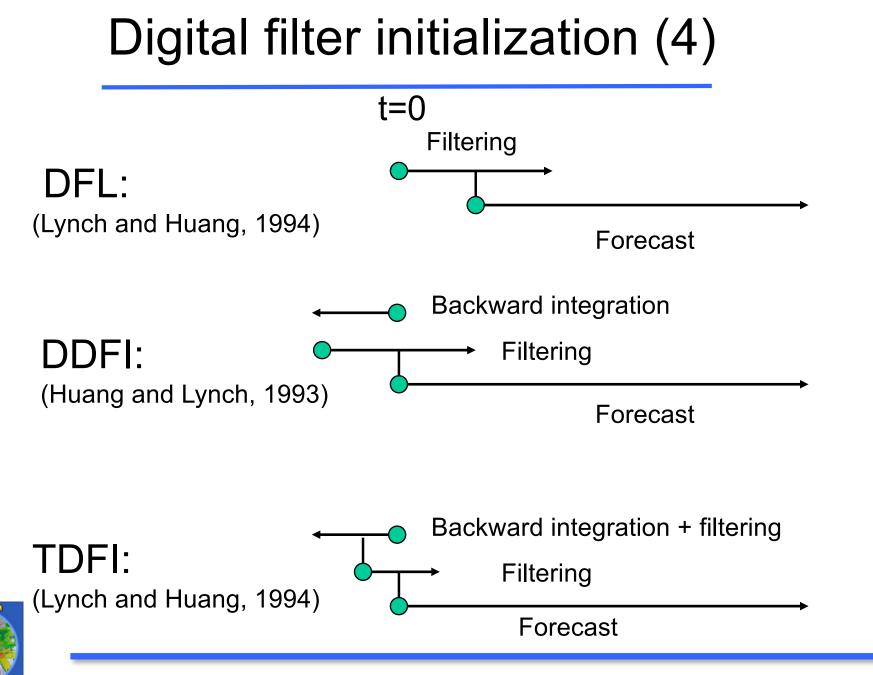
Digital Filter Initialization (DFI) (1)

- DFI is a way to use a low-pass filter to improve model initial conditions
- Useful for short-range model runs (1-6 hours)
- Imbalances in model IC
 - May be introduced by interpolation, different topography, or by objective analysis, and data assimilation
 - May generate spurious gravity waves in the early simulation hours, which could cause erroneous precipitation, numerical instability and degrade subsequent data assimilation

Digital filter initialization (2)

Using DFI


- can construct consistent model fields which do not exist in the initial conditions, e.g. vertical motion, cloud variables
- may reduce the spin-up problem in early simulation hours
- Useful for short-range (1-6 h) forecasts and cycling with data assimilation
- DFI is done after program **rea1**, or dataassimilation step



See 'Using Digital Filter Initialization', Chap 5, UG.

Digital filter initialization (3)

Use of DFI helps to damp high pressure tendencies in early forecast

Digital filter inilialization (5)

Namelist control: &dfi_control

- **dfi_opt:** dfi options: 0: no DFI; 1: DFL; 2: DDFI; 3: TDFI (recommended)
- dfi_nfilter: filter options 0 8, recommended: 7
- dfi_cutoff_seconds : cutoff period
- dfi_write_filtered_input : whether to write
 filtered IC
- dfi_bckstop_* : stop time for backward integration
- dfi_fwdstop_* : stop time for forward integration

related namelists: examples.namelist

To get pressure tendency data, set diag_print=1 or 2

Tracer option

Add the following in &dynamics to activate tracer option (default no. is 8: with array names tr17_1, tr17_2, ..., tr17_8):

One would need some way to initialize the tracer. A simple initialization can be found in program real (dyn_em/module_initialize_real.F)

Trajectory option

Add the following in **&physics** to activate trajectory option:

traj_opt = 1,

And set the number of trajectories in **&domains**:

num_traj = 1000, (default value)

<u>New in V3.9</u>: it can output meteorological variables, as well as chemistry ones, along the trajectories.

Stochastic parameterization schemes

```
This is a way to stochastically perturb forecasts (&stoch)
    skebs: = 1, activate the scheme
    nens: = N, an integer that controls the random number stream;
    a different integer will give a differently perturbed forecast
    perturb_bdy: = 1, use SKEB pattern; = 2, use user-provided
    pattern (new in 3.5)
    sppt: = 1, activate stochastically parameterized pert tendencies
    spp: = 1, activate stochastic perturbed parameters in physics
```

Also see 'Option to stochastically perturb forecasts' section in Chap 5, UG

Also see http://www.cgd.ucar.edu/~berner/skebs.html

Additional Output Option (1)

prec_acc_dt = 60.: in &physics

Output precipitation in a time interval (e.g. 60 min): PREC_ACC_C, for convective rain PREC_ACC_NC, for explicit rain SNOW_ACC_NC, for explicit snow

(Caution: May not suitable for use in long runs)

Additional Output Option (2a)

```
Since V3.4.1:
&diags
  p_lev_diag = 1.
   num_press_levels = 4,
   press_levels = 85000,70000,50000,20000
```

Output a few met fields on pressure levels : U_PL, V_PL, S_PL, T_PL, Q_PL, RH_PL, GHT_PL,

Output goes to auxiliary stream 23, so need to set auxhist23_outname, io_form_auxhist23, auxhist23 interval, frames per auxhist23

Additional Output Option (2b)

```
Since V3.7.1:
&diags
z_lev_diag = 1.
num_z_levels = 4,
z_levels = 80,150,300,3000
```

Output a few met fields on pressure levels : U_ZL, V_ZL, S_ZL, T_ZL, Q_ZL, RH_ZL, GHT_ZL,

Output goes to auxiliary stream 23, so need to set auxhist23_outname, io_form_auxhist23, auxhist23 interval, frames per auxhist23

Additional Output Option (3)

Since V3.9: &diags diags_nwp = 1.

Output a few met fields on model levels : sealevelp, temperature, geoheight, pressure, umet, vmet, speed, dir, U10, V10, Q2, T2, RAIN, LIQRAIN, TPW, RH

Output goes to auxiliary stream 1, so need to set auxhist1 outname, io form auxhist1,

auxhist1_interval, frames_per_auxhist1

Additional Output Option (4)

output_diagnostics = 1: (&time_control)
output max, min, time of max and min, mean
value, standard deviation of the mean for 8
surface variables (T2, Q2, TSK, U10, V10, 10 m
wind speed, RAINCV, and RAINNCV [time step
rain])

```
auxhist3_outname ="wrfxtrm_d<domain>_<date>"
io_form_auxhist3 = 2
auxhist3_interval = 1440, 1440,
frame per auxhist3 = 10, 10,
```


Additional Output Option (5)

nwp_diagnostics = 1: (&time_control)

Output max 10 m wind speed, max helicity in 2 – 5 km layer, max w in updraft and downdraft below 400 mb, mean w in 2 – 5 km layer, and max column graupel in a time window between history output times.

Data goes to history file.

Additional Output Option (6)

do_radar_ref = 1: (&physics)

Compute radar reflectivity using parameters used by different microphysics. Works for options mp_physics = 2,4,6,7,8,10,14,16. Option 9, NSSL mp also produce radar reflectivity output.

Data goes to history file.

Additional Output Option (7)

do_avgflx_em = 1: (&dynamics)

output history-time-averaged, column-pressurecoupled u, v and w: AVGFLX_RUM, AVGFLX_RVM, AVGFLX_RWM – useful for driving downstream transport model

Additional Output Option (8)

afwa_*_opt = 1: (&afwa, with sub-options)

output over 60 diagnostic variables to history file (for example, MSLP, precipitable water, cloud cover, etc.)

See Registry/registry.afwa for full listing.

Data goes to history as well as auxhist2 file.

Additional Output Option (9)

More climate output (from RASM, new in V3.9): mean_diag = 1: (with interval options, &time_control)
diurnal_diag = 1

Output time-step and diurnal averaging of a number of surface variables and radiative fluxes at surface and top of atmosphere (e.g. monthly averages)

See run/README.rasm_diag for details, and Registry/registry.rasm_diag for full listing.

Data goes to auxhist5 and auxhist6 files.

IO quilting: &namelist_quilt

I/O quilting control:

- nio_tasks_per_group (>0): allow IO to be done
 on separate processors. Performance improvement
 for large domain runs. A value of 2 to 4 works well.
- **io_groups (>1) :** number of I/O streams that the quilting applies.
- See 'Using IO Quilting' section, Chap 5, UG

Other ways to improve IO: 1) p-netCDF; 2) use netCDF4 compression option; 3) use io_form_history=102 to output patches of data

Time Series Output (1)

- It is a special output in text format with file name like prefix.d<domain>.TS
- It outputs 14 surface variables at every time step:

e.g. 10 m u/v, 2 m T/qv, precipitation, radiation fluxes, surface fluxes

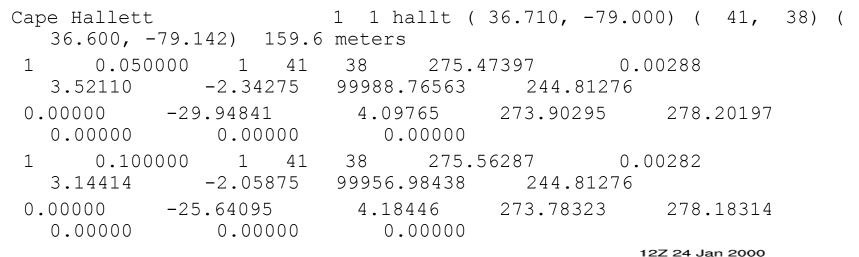
 One file per location (e.g. at weather station), per domain

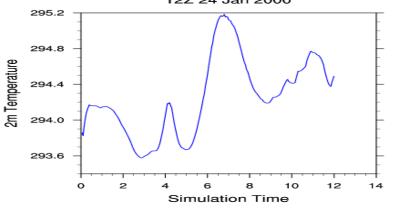
Time Series Output (2)

- It also outputs profiles of U, V, Th, Qv, PH (levels set by max_ts_level, default 15): prefix.d<domain>.UU prefix.d<domain>.VV prefix.d<domain>.TH prefix.d<domain>.QV prefix.d<domain>.PH
- One file per location (e.g. at weather station), per domain.

Time Series Output (3)

- Not a namelist option to turn it on
- If output more than 5 locations, use namelist max_ts_locs in &domains
- Requires a file called 'tslist' present in working directory (a sample of the file is available in WRF/run/


#		#
<pre># 24 characters for name</pre>	pfx LAT	LON
#		#
Cape Hallett	hallt -72.330	170.250
McMurdo Station	mcm -77.851	166.713


- This file provides a list of locations where you would like to output time series
- More information in run/README.tslist and 'Output Time
 Series' section, Chapter 5, UG

Time Series Output (4)

Content in hallt.d01.TS:

Recommended

Start with the namelist template in a particular test directory, and the options specified in the file, and make modifications.

Chapter 5 of ARW User's Guide, pages 5-37 – 5-39: examples for various applications; page 34: physics suites.

For special applications in ARW, look for related namelists in the file *examples.namelist* in *test/em_real/* directory.

For more information on global extension, DFI and adaptive time step, read Tech Note, and User's Guide.

