WRF Data, Utilities & Post-processing

Kelly Werner January 2020

Input Data

Input Data: Mandatory Fields

3D Data (for data on constant pressure levels)

Temperature
U and V components of wind
Geopotential height
Relative Humidity (or Specific Humidity)

3D Data (for data on native model levels)

Temperature
U and V components of wind
Geopotential height
Relative Humidity (or Specific Humidity)
Pressure

2D Data

Surface pressure

Mean sea-level pressure

Skin temperature/SST

2 meter temperature and relative humidity
10 meter U and V components of wind

Soil data (temperature and moisture) and soil height

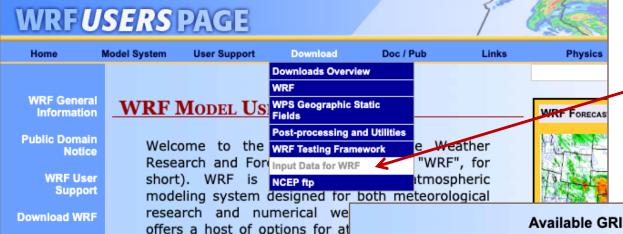
* Recommended Fields

LANDSEA mask field for input data Water equivalent snow depth SEAICE Additional SST data

External Data Sources: Global

Name	Resolution	Coverage	Temporal Availability	Website
NCEP/NCAR Reanalysis (R1/NNRP)	209 km 6-hourly	Global	Jan 1948 - present	http://rda.ucar.edu/d atasets/ds090.0
NCEP/DOE Reanalysis (R2)	209 km 6-hourly	Global	Jan 1979 - present	http://rda.ucar.edu/d atasets/ds091.0
ERA Interim Data	1.125° - 0.703° 6-hourly	Global	Jan 1979 - present	http://rda.ucar.edu/d atasets/ds627.0
ECMWF's Operational Model Analysis	Varying		Jan 2011 - present	http://rda.ucar.edu/d atasets/ds113.0
NCEP GDAS/FNL Reanalysis	0.25° 6-hourly	Global	July 2015 - present	http://rda.ucar.edu/d atasets/ds083.3
GFS Real-time	1°	Global		ftp://ftpprd.ncep.noa a.gov/pub/data/nccf/ com/gfs
NCEP GFS/FNL Reanalysis	1° 6-hourly	Global	Aug 1999 - present	http://rda.ucar.edu/d atasets/ds083.2
GFS Gridded Model Data	0.5° 24-hourly	Global	Dec 2002 - present	http://rda.ucar.edu/d atasets/ds335.0
NCEP GFS 0.25°	0.25° 3-hourly & 12-hourly	Global	Jan 2015 - present	http://rda.ucar.edu/d atasets/ds084.1

External Data Sources: North America


Name	Resolution	Coverage	Temporal Availability	Website
NAM Real-time	32/12 km 6-hourly	North America		ftp://ftpprd.ncep. noaa.gov/pub/dat a/nccf/com/nam
NAM Analysis	12 km 6-hourly	North America	Jan 2012 - present	<pre>http://rda.ucar.ed u/datasets/ds609. 0</pre>
GCIP NCEP Eta	40 km 3-hourly & 6- hourly	North America	April 1995 - present	http://rda.ucar.ed u/datasets/ds609. 2
NCEP NARR	32 km 3-hourly	North America	Nov 1979 - present	http://rda.ucar.ed u/datasets/ds608. 0

External Data Sources: Climate

Name	Resolution	Coverage	Temporal Availability	Website
NCEP Climate Forecast System Reanalysis (CFSR)	0.3° to 2.5° 6-hourly	Global	Jan 1979 - Dec 2010	http://rda.ucar.edu/da tasets/ds093.0
NCEP Climate Forecast System Reanalysis II (CFSv2)	0.2° to 2.5° 6-hourly	Global	Jan 2011 - present	http://rda.ucar.edu/da tasets/ds094.0
NCAR CESM CMIP5 data (netCDF format)	6-hourly	Global	Jan 1950 - 2100	http://rda.ucar.edu/da tasets/ds316.0
NCAR CESM CMIP5 data (IM - Bias Corrected)	6-hourly	Global	Jan 1951 - 2100	http://rda.ucar.edu/da tasets/ds316.1
		SST DATA		
NCEP SST Analysis	1° - 1/12°	Global		http://polar.ncep.noaa .gov/sst
NOMAD3 SST	1° - 0.25°	Global	Jan 1854 - present (depending which product)	http://nomads.ncdc.no aa.gov/data.php
NCEP & NCDC Reconstructed SST	1° - 2°	Global	Jan 1854 - Dec 2015	http://rda.ucar.edu/da tasets/ds277.0

From the WRF Users' page: http://www2.mmm.ucar.edu/wrf/users/

Step 1: Click Download, then scroll down and click 'Input Data from NCAR'

Step 2: Click the dataset you wish to use (for this example, we will use 'FNL from GFS')

WRF Version 4

How to Cite WRF

User's Guide

*Note: The NOMADS site has several types of useful

Available GRIB Datasets from NCAR

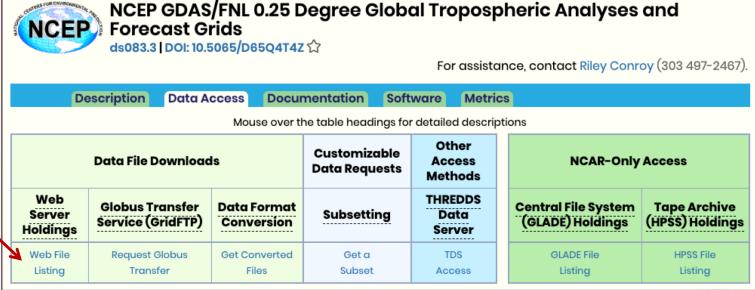
Dataset	Spatial Resolution	Temporal Resolution	Temporal Availability	Vtable
NCEP Final Analysis (GFS-FNL) ds083.0	2.5 degree	12-hourly	1997-04-01 to 2007- 06-30	
NCEP Final Analysis (GFS-FNL) ds083.2	1 degree	6-hourly	1999-07-30 to current	
NCEP GDAS Final Analysis ds083.3	0.25 degree	6-hourly	2015-07-08 to current	<u>Vtable.GFS</u>
NCEP GFS ds084.1	0.25 degree	3-hourly (for first 240 hrs) 12-hourly (hrs 240-384)	2015-01-15 to current	
NCEP/NCAR Reanalysis (NNRP) ds090.0	209 km	6-hourly	1948-01-01 to current	Vtable.NNRP
NCEP Climate Forecast System Reanalysis (CFSR) ds093.0	0.3, 0.5, 1.0, 1.9, & 2.5 degree	6-hourly	1979-01-01 to 2011- 01-01	Vtable.CFSR press pgbh06

data: http://nomads.ncdc.noaa.gov

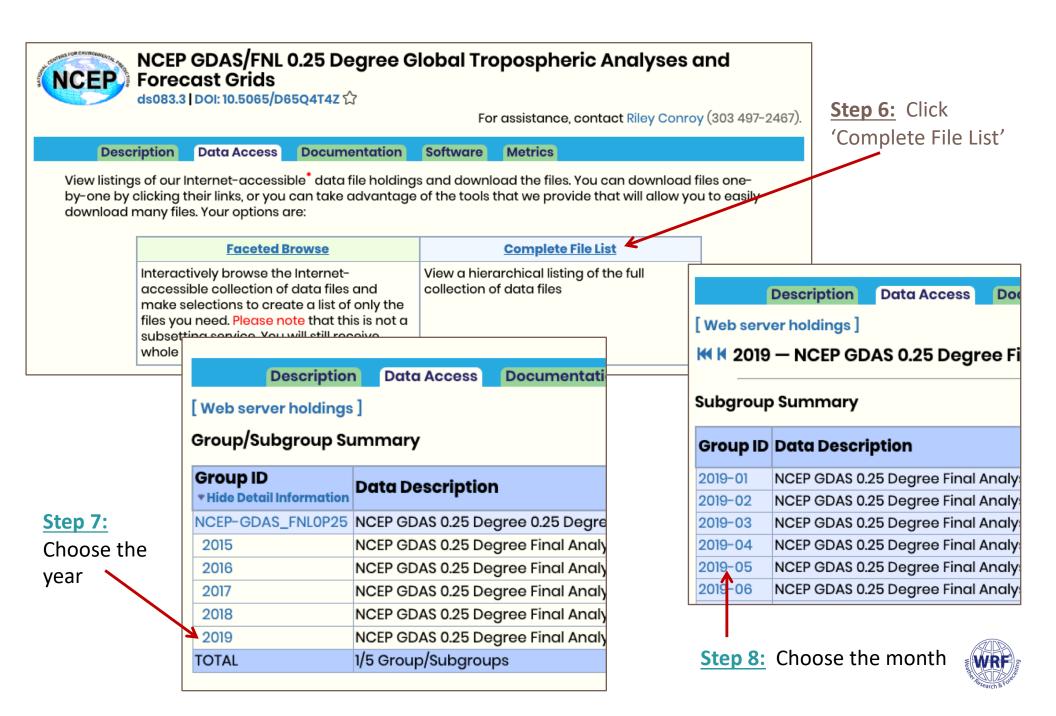
and can run on a variety of

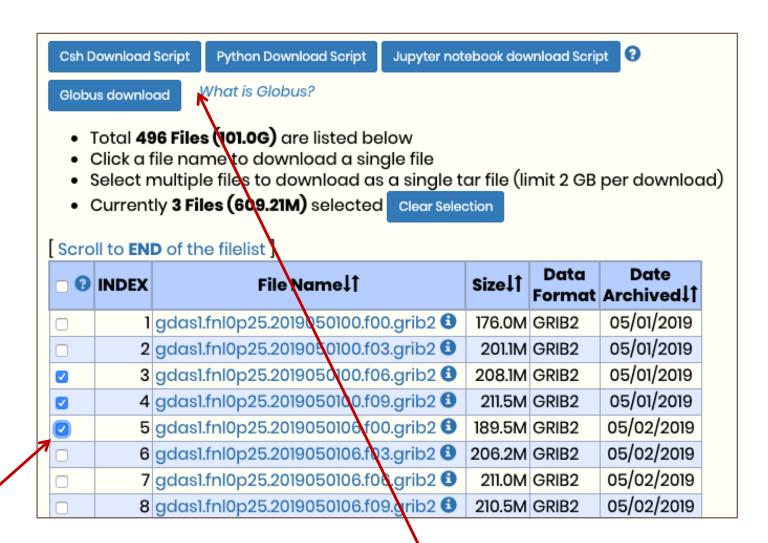
WRF excels in a broad range of scales ranging from tens of mo

kilometers, including the follow


Meteorological studies

Step 3: Register, or sign-in (if you already have an account)


Step 4: Click 'Data Access'



Step 5: Click 'Web File Listing' for the span of years you need

Step 8: Choose a box for each time span that you need

Step 9: Once you have chosen all your times, choose a method to download the files

External Data Sources: NOMADS

http://nomads.ncdc.noaa.gov

NOAA National Operational Model Archive & Distribution System

Data

Access

Inventory

Documentation

User Guide

NCDC Model Data Pages

NOMADS Project

About NOMADS

Partners

Publications & Presentations

Service Records Retention System

Plans for the National Climate Model Portal

Contact Us

Contact Info

The NOAA National Operational Model Archive and Distribution System (NOMADS) is a Web-services based project providing both real-time and retrospective format independent access to climate and weather model data.

Update: 11.10.15

Website appearance changes.

We are upgrading our web appearance. Click here to view our new pages.

Important Notice: 12.17.15

Plot | FTP4U and offline ordering

Our offline ordering interface has transitioned from the Plot | FTP4U system to the HAS website. Links to the HAS website for each product have been added to the NOMADS Data Access page. The Plot | FTP4U system is still available for online data.

DOC » NOAA » NESDIS » NCEI » NOMADS

Search NCEI Disclaimer

NAM

GFS

RUC

CFS

SST

NARR

R1/R2

Utilities

- Grib and Intermediate Data
- Designing a model domain
- netCDF tools
- Other Utilities
- ImageMagick
- Special WRF Output Variables
- OBSGRID
- MET

GRIB Data Handling

Documents

- https://rda.ucar.edu/index.html#gribdoc (GRIB1 data)
- <u>https://rda.ucar.edu/index.html#grib2doc</u> (GRIB2 data)

Decoders

wgrib, wgrib2, unpackgrib2.c, grib2to1.c

http://rda.ucar.edu/#!GRIB

http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html

http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2

- g1print.exe and g2print.exe
 - Show data available in GRIB1 and GRIB2 files
 - Available from util/ directory in WPS

GRIB Data Handling (cont'd)

grib2ctl.pl

- Create .ctl and .idx files, so that you can plot GRIB files with GrADS
- http://www.cpc.ncep.noaa.gov/products/wesley/grib2ctl.html

ncl_convert2nc

Converts from grib format to netcdf format

http://www.ncl.ucar.edu/Document/Tools/ncl_convert2nc.shtml

Writing Intermediate File Format

http://www2.ucar.edu/wrf/users/docs/user_guide_V4/v4.0/users_guide_chap3.html#_Writing_Meteorological_Data

wrf_wps_write_int

```
FIELD = "SST"
UNITS = "K"
DESC = "Sea Surface Temperature"
opt = True
                                                = "ERA-I Data"
opt@map_source
opt@projection
                                                             = 0
                                                             = "SWCORNER"
opt@startloc
opt@startlon
                                                             = 0.0
opt@startlat
                                                             = -90.0
opt@deltalon
                                                             = 1.25
opt@deltalat
                                                             = 0.942408
opt@is_wind_earth_relative
                                               = False
opt@date
                                                             = "2015-07-26 00:00:00"
                                                             = 200100.
opt@level
wrf_wps_wrtie_int(IM_name,FIELD,UNITS,DESC,VAR(:,:),opt)
```

Fortran script to convert netCDF to Intermediate format:

http://www2.mmm.ucar.edu/wrf/users/special_code.html

Reading Intermediate Format Files

NCL Code

wrf_wps_read_int

! opens file

istatus = wrf_wps_open_int(filename)

! reads header

wrf_wps_rdhead_int(istatus,head_real,fiel
d,hdate, \

units,map_source,desc)

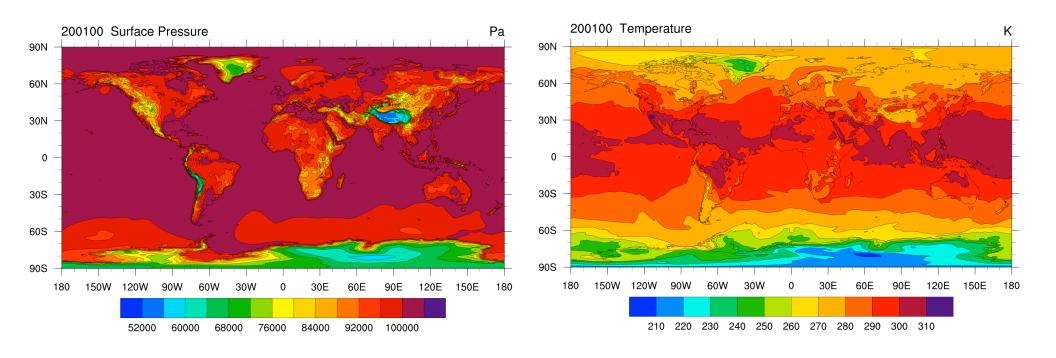
! reads slab

Slab = wrf_wps_rddata_int(istatus,nx,ny)

! Loop until reaching the end of the file

Found in WPS/util/

rd_intermediate.exe


```
FIELD = TT
UNITS = K DESCRIPTION = TEMPERATURE
DATE = 2000-01-24 12:00:00 FCST = 0.000000
SOURCE = unknown model from NCEP GRID 212
LEVEL = 200100.000000
I, J DIMS = 185, 129
IPROJ = 1
   REF X, REF Y = 1.000000, 1.000000
   REF LAT, REF LON = 12.190000, -133.459000
   DX, DY = 40.635250, 40.635250
   TRUELAT1 = 25.000002
DATA(1,1) = 295.910950
```


Plot intermediate files Utility: plotfmt

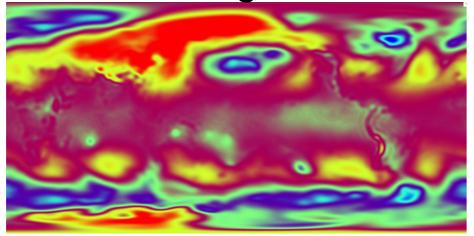
 The plotfmt program plots the fields in the ungribbed intermediate files

> ncl plotfmt.ncl 'filename="FNL:2007-09-15_00"'

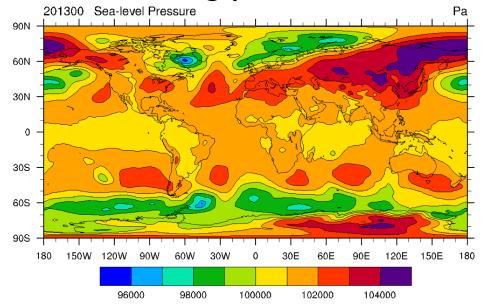
Found in WPS/util/

Plot Intermediate Files in netCDF Format

Use the utility int2nc.exe


Converts intermediate files created by ungrib.exe to netCDF format

> ./int2nc.exe FILE:yyyy-mm-dd_hh


To plot: plotfmt_nc.ncl

> ncl plotfmt_nc.ncl 'inputFILE="FNL:YYYY-MM-DD_HH.nc"'

Plot Using neview

Plot Using plotfmt_nc.ncl

*Both are found in WPS/util/

Model Domain Design

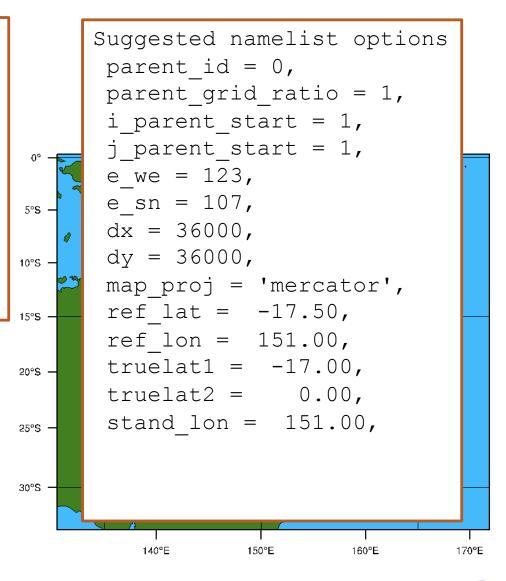
```
DOMS = 1

DX = 36.

MAP = "mercator"

LAT1 = (/ -35.0, -45., -27. /)

LAT2 = (/ 0., -20., -23. /)


LON1 = (/ 131., 121., 125./)

LON2 = (/ 171., 159., 131./)

parent_id = (/ 0, 1, 2 /)

parent_grid_ratio = (/ 1, 3, 3 /)
```

design_grids.ncl

netCDF Tools

NCO Tools

http://nco.sourceforge.net

netCDF Operators:

- command-line programs
- take netCDF input -> perform operatation -> output in various formats (text, binary, netCDF, etc.)

Examples:

- ncdiff
 - Shows the differences between 2 files.
 - > ncdiff input1.nc input2.nc diff.nc
- ncrcat (nc cat)
 - Writes specified variables & times to a new file
 - > ncrcat -d Time, 0, 231 -v RAINNC wrfout* RAINNC.nc
 - Concatenates files
 - > ncrcat file1.nc file2.nc combined.nc
- ncra (nc average)
 - Averages variables in files and writes to a new file
 - > ncra -v T2 file1.nc file2.nc -o T2.nc
 - > ncra -v T2 wrfout* -o T2.nc

NCO Tools (continued)

http://nco.sourceforge.net

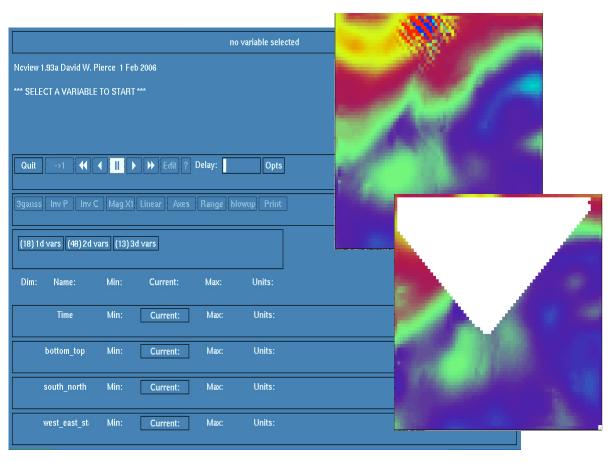
ncrename

Renames variables, dimensions, attributes
 ncrename -v LANDUSE, LAND -a missing_value,_FillValue
 file.nc

ncks (nc kitchen sink)

- Combination of several NCO tools to allow cutting/pasting subsets of data into a new file
 - Extracting a specific variable

```
ncks -v RAINNC wrfout_d01_2015-06-01_00:00:00 RAINNC.nc
    Splitting files
ncks -d Time,1,1 wrfout_d01_2015-06-01_00:00:00 -o
wrfout1.nc
```



NCO Tools: Other Available Operators

- ncap2: arithmetic processor
- ncatted: ATTribute editor
- ncbo: binary operator (includes ncadd, ncsubtract, ncmultiply, ncdivide)
- ncea: ensemble averager
- ncecat: ensemble conCATenator
- ncflint: FiLe INTerpolator
- ncpdq: permute dimensions quickly, pack data quietly
- ncwa: weighted averager

ncview

http://meteora.ucsd.edu/~pierce/ncview_home_page.html

- Graphical interface that allows quick viewing of netCDF files
 - All variables found in file
 - Detect where things go wrong
- Other options
 - Time series
 - Vertical Cross Section
- Any netCDF format file:

```
geo_em.d0*
met_em.d0*
wrfinput_d0*
wrfout.d0*
wrfrst.d0*
```


ncBrowse

http://www.epic.noaa.gov/java/ncBrowse/

ncdump

 Reads a netCDF dataset and prints information from that dataset

- ncdump -h file
 - Prints header (inclusive list of variables in the file)
- ncdump -v VAR file
 - Prints specific data for the variable 'VAR'
- ncdump -v Times file
 - Prints the times that are included in the file

ncdump -v Times file

```
netcdf wrfout d01 2000-01-24 12:00:00 {
dimensions:
        Time = UNLIMITED ; // (3 currently)
        DateStrLen = 19 ;
        west east = 73;
        south north = 60;
        west east stag = 74;
        bottom top = 27;
        south north stag = 61;
        bottom top stag = 28 ;
variables:
        char Times(Time, DateStrLen) ;
        float LU INDEX(Time, south north, west east) ;
                LU INDEX:FieldType = 104;
                LU INDEX: MemoryOrder = "XY " ;
        LU INDEX:description = "LAND USE CATEGORY" ;
                LU INDEX:units = "" ;
                LU INDEX:stagger = "" ;
global attributes:
                :TITLE = " OUTPUT FROM WRF V3.4.1 MODEL";
                :START DATE = "2000-01-24 12:00:00";
                :WEST-EAST GRID DIMENSION = 74;
                :SOUTH-NORTH GRID DIMENSION = 61;
                :BOTTOM-TOP GRID DIMENSION = 28 ;
                :DX = 30000.f;
                :DY = 30000.f;
......
data:
 Times =
  "2000-01-24 12:00:00",
  "2000-01-24 18:00:00",
  "2000-01-25 00:00:00"
```


Other Utilities

- Additional WRF utilities
 - read_wrf_nc: reads WRF netCDF file, outputs various data
 - iowrf: extracts a box from WRF netCDF files, thin or destagger data
 - wrf_interp: interpolates WRF output files to pressure, height-agl, height-msl, potential temp, and equivalent potential temp, and can perform underground extrapolation
 - p_interp: converts wrfout data (from sigma levels) to pressure levels
 - v_interp: adds vertical levels in WRF input and boundary files
 - diffwrf: performs several functions, including making comparisons of two WRF files (available in WRF/external/io_netcdf/)
 - For more details on the above utilities, see:
 http://www2.mmm.ucar.edu/wrf/users/utilities/util.htm
- To download utilities: http://www2.mmm.ucar.edu/wrf/users/download/get_sources.html

ImageMagick

http://www.imagemagick.org

 Converts graphical files from one format to another convert file.pdf file.png convert file.png file.bmp

- Many options available
 - Rotate frames, trim white space, etc.
 - 2 ways to use
 - 1) display plot.png
 - 2) Convert -trim +repage -background white -flatten plot.pdf plot.png
- Can make movies
 - Can create individual frames for each image
- Maintains high resolution great for publishing!
- Cannot deal with .ncgm files

Special WRF Output Variables

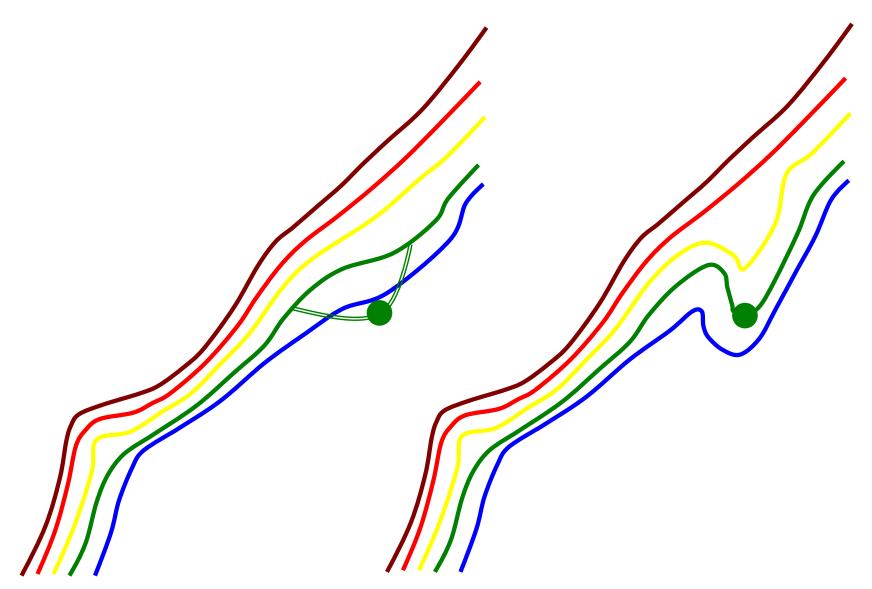
• The WRF model outputs the state variables defined in the Registry file, and these state variables are used in the model's prognostic equations. Some of these variables are perturbation fields and therefore, the following definitions for reconstructing meteorological variables are necessary:

Total geopotential	PH + PHB
Total geopotential height in m	(PH + PHB) / 9.81
Total potential temp in K	T + 300
Total pressure in mb	(P + PB) * 0.01
Wind components, grid relative	U, V
Surface pressure in Pa	Psfc
Surface winds, grid relative	U10, V10 (valid at mass points)
Surface temp and mixing ratio	T2, Q2

OBSGRID

OBSGRID

To improve a first-guess gridded analysis by incorporating additional observational information


- Traditionally first-guess analysis came from low-resolution global analysis and forecast grids
- These days, higher-resolution, regional scale analyses are more readily available

When is this method useful?

- When using very coarse resolution first-guess input data
- If you conducted a field campaign and have acquired very high-resolution station data (for example)

OBSGRID: Basic Concept

OBSGRID: How to Run

- Get the source code http://www2.mmm.ucar.edu/wrf/users/downloads.html
- Compile (serially)
- Prepare observation files
- Edit the namelist.oa
- Link in met_em* files from WPS
- Run the program
 - ./obsgrid.exe
- Check your output

See the WRF Users' Guide for detailed information:

http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V4/v4.0/users_guide_chap7.htm

OBSGRID: Output

metoa_em*

- Final analysis files at sfc and pressure levels
- Can be used to replace met_em* files during real.exe for analysis nudging

wrfsfdda_d0*

- Contains sfc analyses for T, TH, U, V, RH, QV, PSFC, PMSL, and a count of obs within 250 km of each grid point
- Use as input for surface analysis nudging (in &fdda section of namelist, set grid_fdda = 1 and grid_sfdda = 1)

OBS_DOMAIN*01 (e.g., OBS_DOMAIN101, OBS_DOMAIN103)

- Contain list of all observations available to OBSGRID program
- User has option to set values > a specified value to "missing"
- Used during WRF for observational nudging
- Must all be concatenated into a single file (OBS_DOMAIN101)
 - Use 'run_cat_obs_files.csh' to do this

OBSGRID: Output (continued)

- qc_obs_raw.d01.YYYY-MM-DD_HH:mm:ss.tttt(.nc)
 - Similar to OBS_DOMAINXXX, but raw data, and output is in either ASCII or netCDF format
 - ASCII file can be used as input to plotting utility "plot_sounding.exe"
 - NetCDF file can be used to plot both station & sounding data
- qc_obs_used.d01.YYYY-MM-DD_HH:mm:ss.tttt(.nc)
 - Same as above (can be used in the same way), but identical data to OBS_DOMAIN*01 files
- qc_obs_used_earth_relative.d01.YYYY-MM-DD_HH:mm:ss.tttt(.nc)
 - Identical to above, but winds are in an earth-relative framework, rather than model-relative
 - The non-netCDF version can be used as input to MET verification software
- plotobs_out.d01.YYYY-MM-DD_HH:mm:ss.tttt
 - Lists data by variable and by level
 - Each observation used for objective analysis is grouped with all associated observations for plotting or other diagnostic purposes

OBSGRID: Plot Utilities

- sounding.ncl (found in util/)
 - Generates & plots soundings from qc_obs_raw* and qc_obs_used*
- station.ncl (found in util/)
 - creates station plots for each analysis level

MET Verification Software

- Model Evaluation Tools (MET)
- Provides all the basics (e.g., RMSE, bias, skill scores)
- Provides
 - Advanced spatial methods (wavelets, objects)
 - Confidence intervals
- Download it

http://www.dtcenter.org/met/users/downloads/

- Support met_help@ucar.edu
- Documentation

http://www.dtcenter.org/met/users/docs/overview.php

Post-processing

- Supported Packages
- ARWpost
- RIP4

Supported Post-processing Packages

http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html

Package	Users' Guide Page #	Information
NCL	9-2	Graphical package supported by NCAR/CISL (http://forum.mmm.ucar.edu/ and ncl-talk@ucar.edu)
ARWpost	9-29	Converter (GrADS); ARWpost supported by wrfhelp: http://forum.mmm.ucar.edu/
RIP4	9-20	Converter and interface to graphical package, NCAR graphics, supported by wrfhelp: http://forum.mmm.ucar.edu/)
UPP	9-36	Converter (GrADS & GEMPAK) (upp-help@ucar.edu)
VAPOR	9-38	Converter and graphical package Supported by VAPOR (vapor@ucar.edu)
IDV	None - see unidata.ucar.edu	GRIB (from UPP) GEMPAK (from wrf2gem) Vis5d CF compliant data (from wrf_to_cf) Supported by unidata (support@unidata.ucar.edu)
GEMPAK	None - see: unidata.ucar.edu/software/ gempak	Data from wrf2gem or UPP Supported by unidata (support@unidata.ucar.edu)

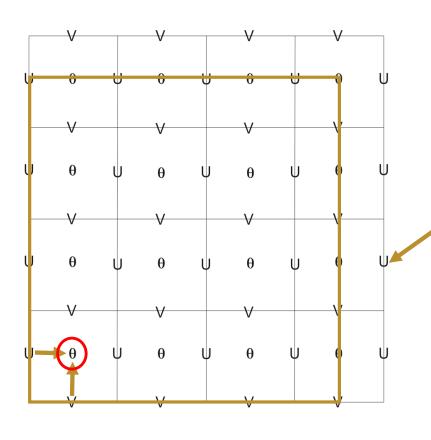
Choosing the Right Tool

- Can it read your data?
- Will you need to pre-process the data first?
- Is it purely a visualization tool, or does it include post-processing?
- Can it handle big datasets?
- Which diagnostic/statistical functions does it have?
- How easy is it to add diagnostics?
- 3D or 2D visualization?

- Can it handle staggered grids?
- How is data below the ground handled?
- Vertical grids?
- How are model time stamps handled?
- Easy to use?
- Cost of package?
- How well supported is it?

Data Handling

	NCL	RIP4	GrADS	UPP	VAPOR	IDV
netCDF		ripdp	ARWpost	converter	converter	converter
GRIB						
ASCII						
shapefiles						
geogrid & metgrid output						
intermediate file format	V6.2.0 V6.3.0					
wrfinput data						
Idealized data						
wrfoutput						
big data						


Post-processing

	NCL	RIP4	GrADS	UPP	VAPOR	IDV
Post-processing						
Data output						
3D						
diagnostics	some	a lot	some	some	limited	limited
Add diagnostics	Very easy	easy	easy	Relatively easy	Not as easy	Not as easy
Vertical output Coordinate	Model pressure height	Model pressure height	Model pressure height	pressure	model	model
Extrapolate Below ground						

Model Staggering

Why is a converter necessary if a package can display netCDF files?

WRF staggered grid

- 1) Converter co-locates data to mass points
- 2) Converter translates variablese.g., "T" is not really temp.Must add 300 for actual temp (K)

ARWpost

ARWpost: General Information

Converter that generates graphical plots

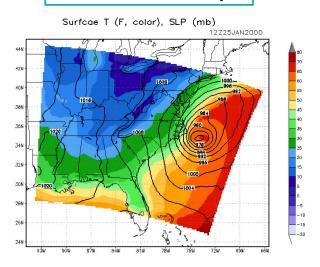
- Reads in wrf-arw model data, creates GrADS output files
- Requires GrADS to display

GrADS software is only needed to display data, not needed to compile the code

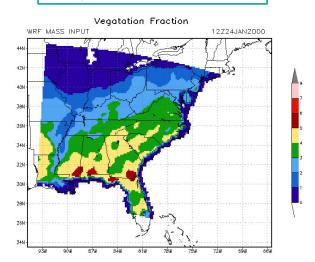
http://www.iges.org/grads/grads.html

Download Code

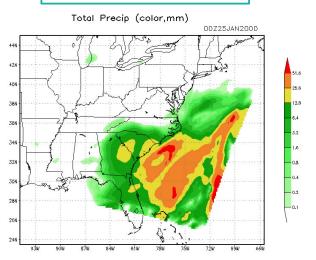
http://www2.mmm.ucar.edu/wrf/users/download/get_sources.html

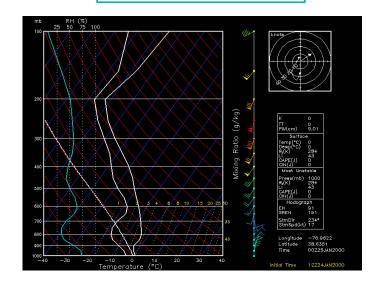

Online Tutorial

http://www2.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/ARWpost/index.php

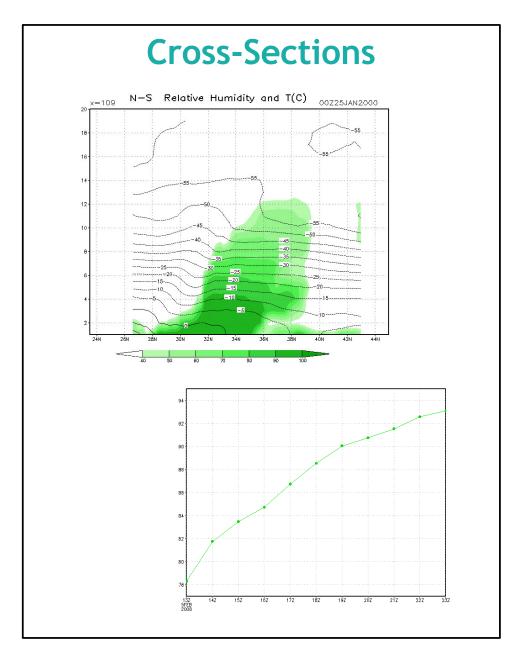


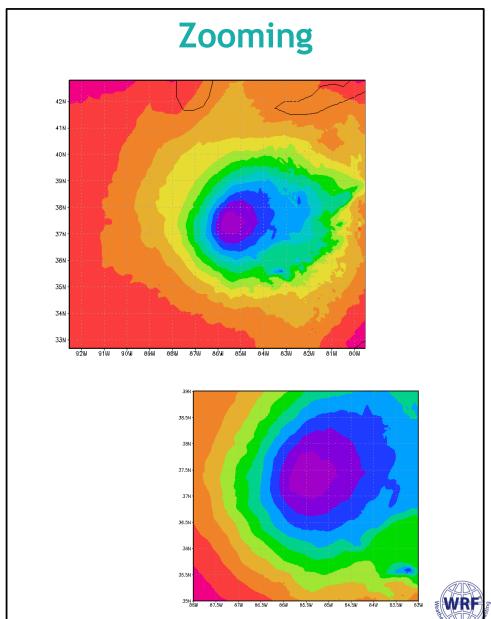
ARWpost: Example Plots


Surface Temp


Vegetation Fraction

Total Precipitation




Skew-T Diagram

ARWpost: Example Functions

ARWpost: Diagnostics

- cape 3d cape
- cin 3d cin
- mcape maximum cape
- mcin minimum cin
- clfr low/middle/high cloud fraction
- dbz 3d reflectivity
- max_dbz maximum reflectivity
- geopt geopotential
- height model height in km
- lcl lifting condensation level
- Ifc level of free convection
- pressure full model pressure in hPa
- rh relative humididy
- rh2 2 m relative humidity

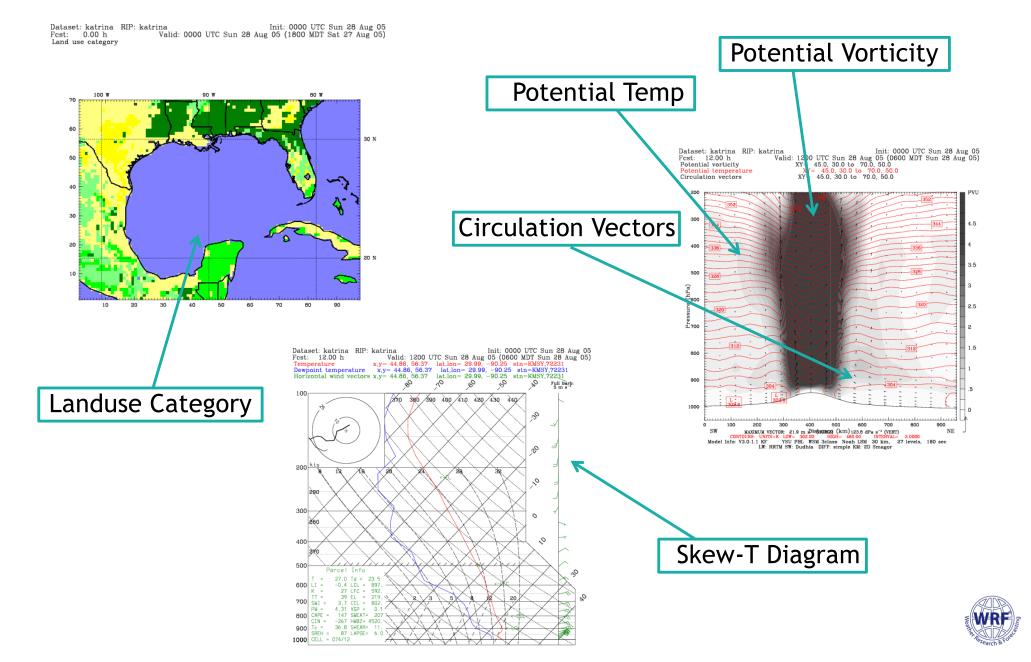
- theta potential temperature
- tc temperature in degrees C
- tk temperature in degrees K
- td dew point temperature in degrees C
- td2 2m dew point temperature in degrees C
- slp sea level pressure
- umet & vmet winds rotated to Earth coordinates
- u10m & v10m 10 m winds rotated to Earth coordinates
- wdir wind direction
- wspd wind speed coordinates
- wd10 10 m wind direction
- ws10 10 m wind speed

ARWpost: Scripts

Script Name	Description
cbar.gs	Plots a color bar on shaded plots
rgbset.gs	Allows you to add/change colors from color # 20 - 99
skew.gs	Program to plot a skewT
plot_all.gs	Automatically finds all .ctl files in the directory and lists them so the user can pick when to use, will plot all fields chosen
rain.gs (real data only)	Plots total rainfall (must have data that contain fields RAINC and RAINNC)
cross_z.gs (real data only)	Plots a NS and EW cross section of RH and T (C)

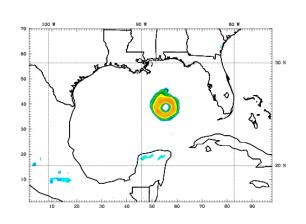
RIP

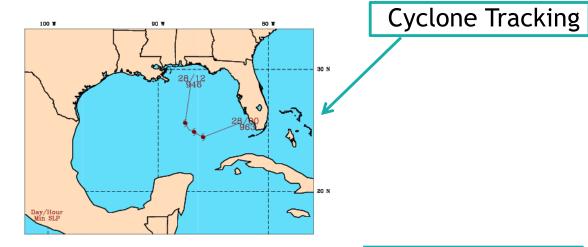
(Read, Interpolate, Plot)

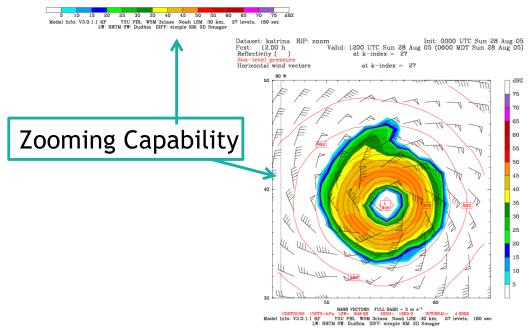


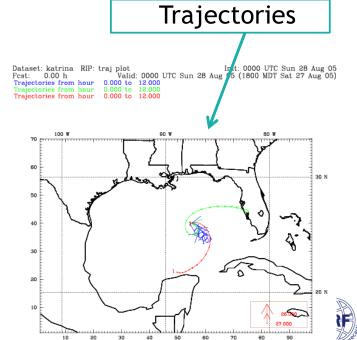
RIP4: General Information

- Requires NCAR Graphics Libraries
 - http://www.ncl.ucar.edu
- Source Code
 - http://www2.mmm.ucar.edu/wrf/users/download/get_ source.html
- Documentation
 - Included in program's tar file (in Doc/ directory)
 - http://www2.mmm.ucar.edu/wrf/users/docs/ripug.ht m
- Online Tutorial
 - http://www2.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/RIP4/index.php

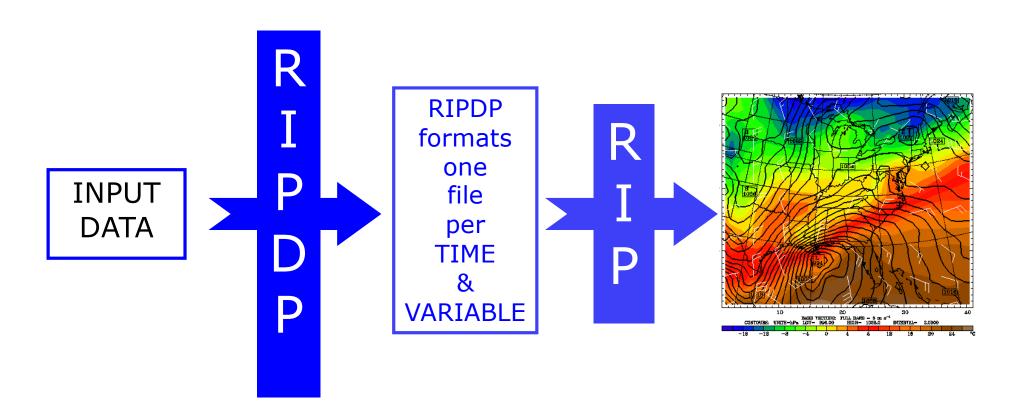



RIP4: Example Plots




RIP4: Example Plots

Dataset: katrina RIP: typhoon Init: 0000 UTC Sun 28 Aug 05 Fcst: 0.00 h Valid: 0000 UTC Sun 28 Aug 05 (1800 MDT Sat 27 Aug 05) Typhoon Track



RIP4: Program Flow

RIP4: Namelist (&userin)

Use namelist to control

- processing times, intervals, title information, text quality on a plot
- whether to do time series, trajectory, or to write output for Vis5D
- Full explanation for namelist variables is available in the user document
- ptimes, ptimeunits times to process
- tacc tolerance for processing data
- iusedaylightrule 1 applied, 0 not applied
- idotser generate time series output
- icgmsplit split metacode into several files
- itrajcalc 0, 1 ONLY when doing trajectory calculations
- rip root override RIP_ROOT
- ncarg_root output type: X11, cgm, pdf, ps

Questions?

