
Nesting in WRF

Dave Gill

Super Cell QSS

2-domain run
 CG
 FG

Feedback: on

Split storm

Overview
•  Nesting: Journalism 101: Who, what, why, when, where
•  Domains

•  OK vs semi-OK vs not OK at all
•  Variable staggering CG to FG
•  Lateral forcing
•  Feedback
•  Masked interpolation
•  Time stepping for multi-domain

•  Concurrent vs Offline Nesting
•  Registry

•  U D F S
•  i2

•  Some suggestions
•  Performance
•  Location, location, location
•  Inside out, start with inner domain
•  Go big or go home
•  Map factors, stability, time step

Nesting Basics - What is a nest

•  A nest is a finer-resolution model run. It may be embedded
simultaneously within a coarser-resolution (parent) model run, or
run independently as a separate model forecast.

•  The nest covers a portion of the parent domain, and is driven along
its lateral boundaries by the parent domain.

•  Nesting enables running at finer resolution without the following
problems:

•  Uniformly high resolution over a large domain - prohibitively
expensive

•  High resolution for a very small domain with mismatched time
and spatial lateral boundary conditions

Nesting Basics

•  One-way nesting via multiple model forecasts
•  One-way nesting with a single model forecast, without feedback

•  One-way/two-way nesting with a single input file, all fields
interpolated from the coarse grid

•  One-way/two-way nesting with multiple input files, each domain
with a full input data file

•  One-way/two-way nesting with the coarse grid data including all
meteorological fields, and the fine-grid domains including only the
static files

•  One-way/two-way nesting with a specified move for each nest
•  One-way/two-way nesting with an automatic move on the nest

determined through (usually) 700 hPa low tracking

Two nests on the same “level”, with a common
parent domain

Parent
domain

Nest #2

Nest #1

Two levels of nests, with nest #1 acting as the parent

for nest #2

Parent
domain

Nest #2
Nest #1

These are all OK

1

2
3

4

5
7

Telescoped to any depth
Any number of siblings

6

Not OK for 2-way

1

2

3

Child domains may not have overlapping points in the
parent domain (1-way nesting excluded).

Preferred – One big Nest

1

2

3

Not OK either

1

2

3

4

Domains have one, and only one, parent -
(domain 4 is NOT acceptable even with 1-way nesting)

WRF Coarse-Fine Overlap

•  The rectangular fine grid is coincident with a portion of the high-
resolution grid that covers the entire coarse grid cell

•  The nested domain can be placed anywhere within the parent domain
and the nested grid cells will exactly overlap the parent cells at the
coincident cell boundaries.

•  Coincident parent/nest grid points eliminate the need for complex,
generalized remapping calculations, and enhances model performance
and portability.

Coarse Grid Staggering

i_parent_start
j_parent_start

Tasks of the Initialization Program
Input Data for real.exe

Lateral Smoothing

Coarse Grid Staggering 3:1 Ratio

CG … 30 31 32 33 34

Starting!
Location!
I = 31!

Coarse Grid Staggering 3:1 Ratio

Feedback:!
U : column!
V : row!
T : cell!

Coarse Grid Staggering 3:1 Ratio

Feedback:!
U : column!
V : row!
T : cell!

 1

 2

 3

 1

Coarse Grid Staggering 3:1 Ratio

Feedback:!
U : column!
V : row!
T : cell!

 1 2 3

 1

Coarse Grid Staggering 3:1 Ratio

Feedback:!
U : column!
V : row!
T : cell!

 1 2 3

 4 5 6

 7 8 9

 1

Masked Interpolation

Masked Feedback

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

DD

D1

D2
D3

D4
D5

WRF 5-domain run: Domain 1 (a single 3 min dt), then Domain 2 (a
single 1 min dt). Then Domain 3, in 20 s pieces up to 1 min. Then
Domain 4, in 20 s pieces up to 1 min, and same with Domain 5.

1
2
3,4,5
6,7,8
9,10,11

Concurrent Nesting with n Inputs

wrf d01
input

wrf d01
bdy

wrf d02
input

WPS
CG

WPS
FG

real.exe
CG: multiple times
FG: one time

wrf.exe
WRF
CG + FG

Coarse and fine grid domains must
start at the same time, fine domain may
end at any time

Feedback may be shut off to produce
a 1-way nest (cell face and cell average)

Any integer ratio for coarse to fine is
permitted, odd is usually chosen for
real-data cases

Options are available to ingest only the
static fields from the fine grid, with the
coarse grid data horizontally interpolated
to the nest

Concurrent Nesting with n Inputs

wrf d01
input

wrf d01
bdy

wrf d02
input

WPS
CG

WPS
FG

real.exe
CG: multiple times
FG: one time

wrf.exe
WRF
CG + FG

Restricted vertical nesting

Usually the same physics are run on all
of the domains (excepting cumulus)

The grid distance ratio is not strictly tied
to the time step ratio

Topography smoothly ramps from coarse
grid to the fine grid along the interface
along the nest boundary

All fine grids must use the nested lateral
boundary condition

Concurrent Nesting with 1 Input
WPS
CG

real CG
multi-times

wrf CG+FG
full fcst

wrf
input

wrf
bdy

ideal CG
Single time

wrf CG+FG
full fcst

wrf
input

Concurrent Nesting with 1 Input
WPS
CG

real CG
multi-times

wrf CG+FG
full fcst

wrf
input

wrf
bdy

A single namelist column entry is tied to each
domain

The horizontal interpolation method, feedback,
and smoothing are largely controlled through
the Registry file

ndown: Offline Nesting
WPS
CG

WPS
FG

real CG
multi-times

real FG
single time

wrf CG
full fcst

ndown
CG fcst +
FG initial

wrf FG
full fcst

wrf
input

wrf
bdy

wrf
input

wrf
out

wrf
input

wrf
bdy

Separate WRF forecast runs, separate
real pre-processor runs, intervening
ndown.exe run

Same restrictions for horizontal nest ratios

Can start at any time that an output time
from the coarse grid was created

Boundary condition frequency for the
fine grid is no better than the coarse grid
output frequency

ndown: Offline Nesting
WPS
CG

WPS
FG

real CG
multi-times

real FG
single time

wrf CG
full fcst

ndown
CG fcst +
FG initial

wrf FG
full fcst

wrf
input

wrf
bdy

wrf
input

wrf
out

wrf
input

wrf
bdy

May choose to have the parent WRF model
moist and scalar information used for the
lateral boundary conditions.

Do not change the microphysics or land
surface model options between the WRF
forecasts.

have_bcs_moist
have_bcs_scalar

ndown: Offline Nesting
WPS
CG

WPS
FG

real CG
multi-times

real FG
single time

wrf CG
full fcst

ndown
CG fcst +
FG initial

wrf FG
full fcst

wrf
input

wrf
bdy

wrf
input

wrf
out

wrf
input

wrf
bdy

May have vertical nesting on the fine grid
based on a constant vertical refinement
factor (in eta space)

vert_refine_fact

Typical refinement factors 2-5 (be careful,
as this refinement takes place in the
lowest eta layers also)

West East Cross section
Shaded: v; Contour: theta

6-h Forecast, from Mohamed Moustaoui

Standard Levels 3x Refinement

Vertical Nesting

Starting with V3.7, the model allows different numbers of
vertical levels on different domains. Usually, this is to
include more levels on the inner domains.

This is a new feature and needs to be handled cautiously.

Restrictions:

 Only RRTM and RRTMG radiation schemes are available
 Real data cases only
 Static nest locations only

Vertical Nesting

 &domains
 max_dom = 2,
 e_vert = 35, 45,
 vert_refine_method = 0, 2,

Vertical Nesting
eta_levels(1:35) = 1., 0.993, 0.983, 0.97, 0.954, 0.934,
 0.909, 0.88, 0.8406663, 0.8013327,
 0.761999, 0.7226653, 0.6525755,
 0.5877361, 0.5278192, 0.472514,
 0.4215262, 0.3745775, 0.3314044,
 0.2917579, 0.2554026, 0.2221162,
 0.1916888, 0.1639222, 0.1386297,
 0.1156351, 0.09525016, 0.07733481,
 0.06158983, 0.04775231, 0.03559115,
 0.02490328, 0.0155102, 0.007255059, 0.

Vertical Nesting
eta_levels(36:81) = 1.0000, 0.9946, 0.9875, 0.9789, 0.9685,
 0.9562, 0.9413, 0.9238, 0.9037, 0.8813,
 0.8514, 0.8210, 0.7906, 0.7602, 0.7298,
 0.6812, 0.6290, 0.5796, 0.5333, 0.4901,
 0.4493, 0.4109, 0.3746, 0.3412, 0.3098,
 0.2802, 0.2524, 0.2267, 0.2028, 0.1803,
 0.1593, 0.1398, 0.1219, 0.1054, 0.0904,
 0.0766, 0.0645, 0.0534, 0.0433, 0.0341,
 0.0259, 0.0185, 0.0118, 0.0056, 0.

What are those “usdf” Options

state real u ikjb dyn_em 2 X \
i01rhusdf=(bdy_interp:dt) \

 "U" "x-wind component" "m s-1”

“f” defines what lateral boundary forcing routine (found in
share/interp_fcn.F) is utilized, colon separates the
additional fields that are required (fields must be
previously defined in the Registry)

Called at beginning of each set of child time steps, has parent

and child information available – could be used with SST.

What are those “usdf” Options
state real landmask ij misc 1 - \
i012rhd=(interp_fcnm)u=(copy_fcnm)\
"LANDMASK" "LAND MASK (1=LAND, 0=WATER)"

“u” and “d” define which feedback (up-scale) and horizontal

interpolation (down-scale) routines (found in share/
interp_fcn.F) are utilized

Default values (i.e. not a subroutine name listed in the

parentheses) assume non-masked fields

What are those “usdf” Options
state real ht ij misc 1 - i012rhdus "HGT" \

"Terrain Height" "m"

“s” if the run-time option for smoothing is activated, this field is

to be smoothed - only used for the parent of a nest domain,
smoothing is in the area of the nest, excluding the outer row
and column of the nest coverage

Whether or not smoothing is enabled is a run-time option from

the namelist – smoothing can always be turned off without
introducing any problems

Special IO Stream #2 Fields
state real msft ij misc 1 - \

i012rhdu=(copy_fcnm) "MAPFAC_M" \
 "Map scale factor on mass grid" "”

state real msfu ij misc 1 X \

i012rhdu=(copy_fcnm) "MAPFAC_U" \
 "Map scale factor on u-grid" "”

state real msfv ij misc 1 Y \

i012rhdu=(copy_fcnm) "MAPFAC_V" \
 "Map scale factor on v-grid" ""

Nesting Suggestions

•  The size of the nested domain may need to be
chosen with computing performance in mind.

•  Assuming a 3:1 ratio and the same number of grid
cells in the parent and nest domains, the fine grid
will require 3x as many time steps to keep pace
with the coarse domain.

•  A simple nested domain forecast is approximately
4x the cost of just the coarse domain.

•  Don’t be cheap on the coarse grid, doubling the
CG points results in only a 25% nested forecast
time increase.

Nesting Suggestions

•  Example: assume 3:1 nest ratio

If the nest has the same number of grid cells, then

the amount of CPU to do a single time step for a
coarse grid (CG) and a fine grid step (FG) is
approximately the same.

Since the fine grid (3:1 ratio) has 1/3 the grid

distance, it requires 1/3 the model time step.
Therefore, the FG requires 3x the CPU to catch up
with the CG domain.

Nesting Suggestions

•  Example: assume 3:1 nest ratio

If you try to cover the SAME area with a FG domain

as a CG domain, you need (ratio)^2 grid points.

With the associated FG time step ratio, you require a

(ratio)^3.

With a 3:1 ratio, a FG domain covering the same

area as a CG domain requires 27x CPU.

Nesting Suggestions

•  Example: assume 10:1 nest ratio

To change your test case from 50-km resolution to a
finer 5-km resolution would be 1000x more
expensive.

Nesting Suggestions
•  The minimum distance

between the nest boundary
and the parent boundary is
FOUR grid cells

•  You should have a
larger buffer zone

•  It is not unreasonable to
have approximately 1/3 of
your coarse-grid domain
surrounding each side of
your nest domain

1

2

1/3 1/3 1/3

Nesting Suggestions

•  Start with designing your inner-most domain. For
a traditional forecast, you want everything
important for that forecast to be entirely contained
inside the domain.

•  Then start adding parent domains at a 3:1 or 5:1
ratio. A parent should not have a smaller size (in
grid points). Keep adding domains until the most
coarse WRF grid has a no more than a 3:1 to 5:1
ratio to the external model (first guess) data.

Nesting Suggestions

•  Larger domains tend to be better than smaller
domains.

•  A 60 m/s parcel moves at > 200 km/h. A 2-km
resolution grid with 100x100 grid points could
have most of the upper-level initial data swept out
of the domain within a couple of hours.

Nesting Suggestions

Map factors > 1.6

Nesting Suggestions

•  The most-coarse domain may have a geographic extent
that causes large map factors.

 time_step = 300 (BLOWS UP)
 dx = 45000,15000,5000
 grid_id = 1, ,2 ,3
 parent_id = 0, ,1 ,2
 parent_grid_ratio = 1, ,3 ,3
 parent_time_step_ratio = 1, ,3 ,3

Nesting Suggestions

•  Reducing the time step so that the coarse grid is stable
makes the model too expensive. 1.6x

 time_step = 180 (STABLE, PRICEY)
 dx = 45000,15000,5000
 grid_id = 1, ,2 ,3
 parent_id = 0, ,1 ,2
 parent_grid_ratio = 1, ,3 ,3
 parent_time_step_ratio = 1, ,3 ,3

Nesting Suggestions

•  Only reduce the time step on the coarse grid, and keep the
fine grid time steps at their approx original values.

 time_step = 180 (STABLE, CHEAP)
 dx = 45000,15000,5000
 grid_id = 1, ,2 ,3
 parent_id = 0, ,1 ,2
 parent_grid_ratio = 1, ,3 ,3
 parent_time_step_ratio = 1, ,2 ,3

Nesting Suggestions

•  Model time step is always proportional to the time step of
the most coarse grid.

•  The coarse grid is the only grid impacted with large map
factors: dt(s) = 6*dx(km) but the nominal grid
distance needs to be scaled:

 dt(s) = 6*dx(km) / MAX (map factor in domain)
•  Reducing the coarse grid time step does not significantly

reduce model performance if you can tweak the time step
ratio.

Nesting Suggestions

•  The time step ratio and grid distance ratio are not
necessarily identical, and may used effectively when large
map factors in the coarse grid domain force a time step
reduction for stability.

•  If map factors are causing stability troubles, it is usually
only the most coarse grid that is impacted since the fine
grid is usually in the middle of the domain.

Nesting Suggestions

•  Set up domain first to provide good valid forecast,
then deal with efficiency

•  Selecting a set of domains with the reason “it is all
I can afford” gets you into trouble

•  Numerically stable and computationally expedient
do not imply scientifically or physically valid

Review
•  Nesting: Journalism 101: Who, what, why, when, where
•  Domains

•  OK vs semi-OK vs not OK
•  Variable staggering CG to FG
•  Lateral forcing
•  Feedback
•  Masked interpolation
•  Time stepping for multi-domain

•  Concurrent vs Offline Nesting
•  Registry

•  U D F S
•  i2

•  Some suggestions
•  Performance
•  Location, location, location
•  Inside out, start with inner domain
•  Go big or go home
•  Map factors, stability, time step

Nesting PART 2

•  Nesting steps inside of WRF

•  Available source code options

•  Choosing the nested interpolation type

•  Building automatically accessed routines

Nesting Sequence Inside of WRF

•  The WRF model always has the parent domain integrate a single
time step, then the code checks to see if a child domain exists
(valid time)

•  The parent has current (t+dt) information stored in the _2 variables
and the information from the previous time step stored in the _1
variables (for example t_1, t_2, etc).

•  These two time levels of data allow the lateral boundary conditions
for the fine grid to be handled similarly to that of the coarse grid:
an initial value (the old time, _1) and a tendency to get to the next
time are required

Nesting Sequence Inside of WRF

•  The initial value and the tendency from the parent domain are
horizontally interpolated onto the child domain

•  For a nest ratio of 3:1, then three child time steps are required to
get to the parent current time. The tendency during these three
child time steps along the lateral boundaries remains constant

•  At the end of the last child time step required to get to the parent’s
current time, for a two-way nest, the child information feedsback
to the parent domain

Available Source Code Options

•  The nesting inside of WRF requires a few types of routines:
•  Horizontally interpolate the parent to the child
•  Generate the lateral boundary conditions for the child
•  Feed information from the child back to the parent
•  Optionally smooth the area in the parent covered by the child

domain after feedback

•  All of these options are selected through the Registry

Available Source Code Options

•  In the Registry, the nesting options are located with the I/O flags

Latitude: du=(copy_fcnm)!
U: usdf=(bdy_interp:dt)!
TSK: d=(interp_mask_field:lu_index,iswater)u=(copy_fcnm) !
LANDMASK: d=(interp_fcnm_imask)u=(copy_fcnm)!
SST: d=(interp_mask_field:lu_index,iswater)!
!

•  but could be as complicated as
SST: d=(interp_mask_field:lu_index,iswater)\
f=(p2c_mask:lu_index,tslb,num_soil_layers,iswater)!

Available Source Code Options

•  The syntax for horizontal interpolation from the parent to the child
is “d” for “down”

d=(subroutine_name: optional arguments, comma separated)!
!

•  Default is interp_fcn

•  The “d” option is handled only once per domain, at initialization

Available Source Code Options

•  The syntax for feedback from the child back to the parent is “u” for
“up”

d=(subroutine_name: optional arguments, comma separated)!
!

•  Default is copy_fcn

•  The “u” is processed in the WRF model after the last required fine
grid time step brings the child domain up to the same time as the
parent!

Available Source Code Options

•  The syntax for the lateral boundary tendency computation is “f”
for LBC “forcing”

f=(subroutine_name: optional arguments – typically time step)!
!

•  Default is interp_bdy (but specified because the time step
argument is always used)

•  The lateral boundary condition shares the “f” option. Any domain
that would like to have the child domain given information at the
end of each parent time step (such as lateral boundaries), may use
the “f=()” Registry option. Some developers have subroutines that
interpolate a child domain from the parent at EACH parent time
step (SSTs and perturbations from SKEBS are examples)

!

Choosing the Nested Interpolation Type

•  At run-time, the user may select the order of the horizontal
interpolation to be used

 &domains!
 interp_method_type = 1: bilinear!
 2: sint!
 3: nearest neighbor!
 4: quadratic!
 /!

•  The same order/type of interpolator is used the initial horizontal
interpolation and the subsequent lateral boundary interpolation

Building Automatically Accessed Routines

•  The registry program manufactures a default template for
the subroutine call.

SUBROUTINE interp_fcn & !
 (cfld, & !
 cids, cide, ckds, ckde, cjds, cjde, &!
 cims, cime, ckms, ckme, cjms, cjme, &!
 cits, cite, ckts, ckte, cjts, cjte, &!
 nfld, & !
 nids, nide, nkds, nkde, njds, njde, &!
 nims, nime, nkms, nkme, njms, njme, &!
 nits, nite, nkts, nkte, njts, njte, &!
 shw, & !
 imask, & !
 xstag, ystag, & !
 ipos, jpos, & !
 nri, nrj) !

Building Automatically Accessed Routines

•  The lateral boundary routines (the “f=()” option) always get the
eight boundary arrays appended (total of 16 arrays, 8 for parent, 8
for child).

•  Any extra variables are ALWAYS tagged on to the end of the
subroutine, and always in pairs: parent and child (for example:
time step, land mask, etc).

•  The user may place the new routine (called by the name given in
the Registry file) in the interp_fcn.F file

Nesting PART 2

•  Nesting steps inside of WRF

•  Available source code options

•  Choosing the nested interpolation type

•  Building automatically accessed routines

