
Real

Dave Gill
gill@ucar.edu

 real.exe

 wrf.exe

wrf d01
input

wrf d01
bdy

wrf d02
input

Description of
General Functions

WPS d1
output

WPS d2
output

Real program in a nutshell

•  Function
•  Standard input variables
•  Base State
•  Standard generated output
•  Vertical interpolation
•  Soil level interpolation
•  Nested processing

Function

•  The WRF model pre-processor is real.exe
•  The real.exe program is available serial or DM parallel

(primarily for aggregate memory purposes, as opposed to
timing performance)

•  This program is automatically generated when the model is
built and the requested use is for a real data case

•  The real.exe program takes data from WPS and transform
the data for WRF

•  Similar to the ARW idealized data pre-processor, real.exe
is tightly coupled to the WRF model through the Registry

Function

•  3D forecast or simulation
•  Meteorological input data that primarily originated from a

previous forecast or analysis, probably via the WPS
package

•  Anticipated utilization of physics packages for
microphysics, surface conditions, radiation, convection,
and boundary layer (maybe usage of nudging capabilities)

Function

•  A non-Cartesian projected domain
–  Lambert conformal, Mercator, polar stereographic,

rotated latitude/longitude (global or regional)

•  Selection of realistic static fields of topography, land use,
vegetation, and soil category data

•  Requirement of time dependent lateral boundary
conditions for a regional forecast

Function

•  Generation of diagnostics necessary for assumed WRF
model input

•  Input field adjustment for consistency of static and time
dependent fields (land mask with soil temperature, etc.)

•  ARW: computation of reference and perturbation fields
•  Generation of initial state for each of the requested

domains
•  Creation of a lateral boundary file for the most coarse

domain
•  Vertical interpolation for 3d meteorological fields and for

sub-surface soil data

Standard Input Variables

•  The metgrid program typically provides meteorological
data to the real program.

•  Coordinate:
–  The real program is able to input and correctly process

any strictly monotonically oriented vertical coordinate
•  Isobaric: OK
•  Sigma: OK
•  Hybrid: OK

Standard Input Variables

•  The metgrid program typically provides meteorological
data to the real program.

•  Mandatory:
–  3d and surface: horizontal winds, temperature, relative humidity,

geopotential height
–  3d soil: soil temperature
–  2d fields: surface pressure, sea-level pressure, land mask

•  Optional (but desirable):
–  3d soil: soil moisture
–  2d fields: topography elevation of input data, SST, sea-ice, skin

temperature

Base State

•  Several of the mass-point fields are separated into a time-
independent base state (also called a reference state) and a
perturbation from the base state

•  The base state fields are only functions of the topography
and a few user-selectable constants

•  If the topography changes, such as with a moving nest, the
base state fields are modified

•  Feedback for 2-way nesting also impacts base state fields
through topographic averaging – inside of the WRF model

•  No base state computations are required prior to the real
program

Standard Generated Output

•  For regional forecasts, the real program generates both an
both an initial (wrfinput_d01) and a lateral boundary
(wrfbdy_d01)

•  The boundary file is not required for global forecasts with
ARW

•  The initial condition file contains a single time period of
data

•  These files contain data used directly by the WRF model
•  The initial condition file may be ingested by the WRFDA

code (referred to as a cold-start)
•  If n times were processed with WPS and real, the lateral

boundary file contains n-1 time slices

Lateral Boundary Condition Times

Time periods

from WPS

Time slices from

WPS

Boundary

tendency steps

0 6 12 18 24 30 36 h

1 2 3 4 5 6 7

1 2 3 4 5 6

Lateral Boundary Condition Times

Time periods

from WPS

Time slices from

WPS

Boundary

tendency steps

0 6 12 18 24 30 36 h

1 2 3 4 5 6 7

1 2 3 4 5 6

n-1 n

Tasks of the Initialization Program
Input Data for real.exe

Vertical Interpolation

§  A number of vertical interpolation options are available to
users

§  The options can have a significant impact on the initial
conditions passed to the model

§  More information is contained in the info file
README.namelist in the run directory

§  Options are located in the &domains namelist record of
namelist.input

Vertical Interpolation

Make sure input data is vertically ordered as expected

Input 3-D pressure and T, topo, Z, moisture used to

compute total surface pressure

Compute target vertical coordinate using normalized dry

column pressure pressure

The h surfaces may be computed or selected

Vertically interpolate input fields in pressure to the h

surfaces in dry pressure: default all variables linear in
log(pressure)

Vertical Interpolation

•  Select reasonable h levels, or let the real program do it for
you

•  Verify that the “thicknesses” are acceptable, generally
about the same value in the free-atmosphere and less than
1000 m

•  It is SAFEST to NOT initially choose h values
–  Initially, select the number of h levels
–  Plot profiles of the resultant heights
–  Adjust the h levels accordingly

•  A few namelist options, the terrain elevation, and eta levels
completely define the model coordinate for the WRF code

Vertical Interpolation

•  The h surfaces are computed with a few NML parameters:

 &domains
 e_vert = 50, 50, 50
 p_top_requested = 1000,

 &dynamics
 base_temp = 290.
 iso_temp = 200

Vertical Interpolation

Vertical cross sections of model height field, with 50 vertical
levels and ptop = 10 hPa, above the PBL.

 Uniform layers Exaggerated Stretching

720-820 m

2000 m
1000 m
 800 m

 575 m

Physical Parameterization Settings

•  The real program and the WRF model are tightly coupled
•  Most physical parameterization settings in the

namlist.input are IGNORED by real
•  EXCEPT

–  sf_surface_physics
–  Land surface model (processes soil temperature and soil

moisture)
–  Different schemes in WRF use differing numbers of

layers
–  The layers are defined in real from the metgrid output

Soil Level Interpolation

•  The WRF model supports several Land Surface schemes:
–  sf_surface_physics = 1, Slab scheme
–  5 layers
–  Defined with thicknesses: 1, 2, 4, 8, 16 cm

Layers Mid point
000 – 010 cm -- 005 cm
010 – 040 cm -- 025 cm
040 – 100 cm -- 070 cm

100 – 200 cm – 150 cm

Levels
000 cm
005 cm
020 cm
040 cm
160 cm
300 cm

Noah RUC

Soil Level Interpolation

•  The WRF model supports several Land Surface schemes:
–  sf_surface_physics = 2, Unified Noah scheme
–  4 layers
–  Defined with layers: 0-10, 10-40, 40-100, 100-200 cm

Layers Mid point
000 – 010 cm -- 005 cm
010 – 040 cm -- 025 cm
040 – 100 cm -- 070 cm

100 – 200 cm – 150 cm

Levels
000 cm
005 cm
020 cm
040 cm
160 cm
300 cm

Noah RUC

Soil Level Interpolation

•  The WRF model supports several Land Surface schemes:
–  sf_surface_physics = 3, RUC scheme
–  6 levels
–  Defined at levels: 0, 5, 20, 40, 160, 300 cm

Layers Mid point
000 – 010 cm -- 005 cm
010 – 040 cm -- 025 cm
040 – 100 cm -- 070 cm

100 – 200 cm – 150 cm

Levels
000 cm
005 cm
020 cm
040 cm
160 cm
300 cm

Noah RUC

Soil Level Interpolation

•  The WRF model supports several Land Surface schemes:
–  sf_surface_physics = 7, PX scheme
–  2 layers
–  Defined with layers: 0-1, 1-100 cm

Layers Mid point
000 – 010 cm -- 005 cm
010 – 040 cm -- 025 cm
040 – 100 cm -- 070 cm

100 – 200 cm – 150 cm

Levels
000 cm
005 cm
020 cm
040 cm
160 cm
300 cm

Noah RUC

Nested Processing

•  May read multiple domain input files from metgrid
•  Requires only the initial time for the fine domains, unless

doing nudging or SST update

•  No horizontal interpolation from parent to child!

•  No consistency checks between domains (handled in the
feedback step for the WRF model)

•  A wrfinput_d0x file is created for each processed input
domain

•  A lateral boundary file is created only for the most coarse
domain

Real program in a nutshell

•  Function
•  Standard input variables
•  Base State
•  Standard generated output
•  Vertical interpolation
•  Soil level interpolation
•  Nested processing

Real program in a nutshell: PART 2

•  Access to everything
•  Eta levels
•  Metgrid flags
•  Adding a variable for vertical interpolation
•  Vertical interpolation
•  Tracers
•  Trajectories
•  Options

Access to Everything

•  The primary location to modify the real program is the
dyn_em/module_initialize_real.F file

•  Contains:
–  Registry information
–  All of the namelist settings selected
–  Variables from the Metgrid program
–  Variables to be sent to the WRF model

•  Called for every time period, for every domain

Access to Everything

•  The value of every variable input into the WRF model is
controlled through module_initialize_real.F

•  All variables are accessed through the derived data type
“grid”

DO j=jts,MIN(jde-1,jte)!
 DO i=its,MIN(ide-1,ite)!
 grid%sst(i,j) = grid%sst(i,j) + 1!
 END DO!
END DO!

Access to Everything

•  The dynamics variables have two time levels, indicated by
the _1 and _2 suffixes. Only the _2 variables are sent to
WRF.

•  Some variables sent to WRF are diagnostic only

DO j = jts, min(jde-1,jte)!
 DO i = its, min(ide,ite)!
 grid%u10(i,j)=grid%u_gc(i,1,j)!
 END DO !
END DO!

Eta Levels

•  The vertical coordinate, eta, used in the WRF model is
defined inside of the real program.

•  The user may allow the real program to choose the levels
(select only the number of levels in the namelist.input file)

 &domains!
 e_vert = 30, 30, 30, !
 /!
!
&domains!
 e_vert = 30, 40, 50, !
 /!
!

Eta Levels

•  Often the user needs to specify the eta levels (coordinate
this with your model top)

•  Use the automatic generation to your advantage

•  Specify how many levels ABOVE the PBL that you
require. Add 8 to this value. For example, you require 50
vertical levels above the PBL.

 &domains!
 e_vert = 58, 58, 58, !
 /!

Eta Levels

•  Run the real program (single or small domain, one time level),
make sure the level thicknesses are OK (< 1000 m)

 Converged znw(kte) should be about 0.0 = -5.2081142E-04!
Full level index = 1 Height = 0.0 m!
Full level index = 2 Height = 56.6 m Thickness = 56.6 m!
Full level index = 3 Height = 137.9 m Thickness = 81.4 m!
Full level index = 4 Height = 244.7 m Thickness = 106.8 m!

Full level index = 5 Height = 377.6 m Thickness = 132.9 m!
Full level index = 6 Height = 546.3 m Thickness = 168.7 m!
Full level index = 7 Height = 761.1 m Thickness = 214.8 m!
Full level index = 8 Height = 1016.2 m Thickness = 255.0 m!
Full level index = 9 Height = 1207.1 m Thickness = 190.9 m!
Full level index = 10 Height = 1401.8 m Thickness = 194.6 m!

Full level index = 11 Height = 1600.3 m Thickness = 198.5 m!
Full level index = 12 Height = 1802.8 m Thickness = 202.5 m!
Full level index = 13 Height = 2196.1 m Thickness = 393.3 m!
!
!
!

Eta Levels

•  Get the computed levels from ncdump, after running the real
program

> ncdump -v ZNW wrfinput_d01!

data:!
!
 ZNW =!
 1, 0.993, 0.983, 0.97, 0.954, 0.934, 0.909, 0.88, 0.8587637, 0.8375274, !
 0.8162911, 0.7950548, 0.7550299, 0.7165666, 0.6796144, 0.6441237, !
 0.6100466, 0.5773363, 0.5459476, 0.5158363, 0.4869595, 0.4592754, !

 0.4327437, 0.407325, 0.382981, 0.3596745, 0.3373697, 0.3160312, !
 0.2956253, 0.2761188, 0.2574798, 0.2396769, 0.2226802, 0.2064602, !
 0.1909885, 0.1762376, 0.1621807, 0.1487919, 0.1360459, 0.1239184, !
 0.1124378, 0.1017038, 0.09166772, 0.08228429, 0.07351105, 0.06530831, !
 0.05763897, 0.05046835, 0.04376402, 0.03749565, 0.0316349, 0.02615526, !
 0.02103195, 0.01624179, 0.01176313, 0.007575703, 0.003660574, 0 ;!
!
!
!

Eta Levels

•  Re-run the real program (all domains, all time periods) with
the new levels in the nml variable eta_levels

•  Replace the PBL values with those of your choosing.

•  Augment the number of vertical levels (e_vert)

•  Note that both e_vert and eta_levels are full levels!
!
!

Eta Levels

&domains!
eta_levels =!
 1, 0.993, 0.983, 0.97, 0.954, 0.934, 0.909, 0.88, !
 0.8587637, 0.8375274, !
 0.8162911, 0.7950548, 0.7550299, 0.7165666, 0.6796144, 0.6441237, !
 0.6100466, 0.5773363, 0.5459476, 0.5158363, 0.4869595, 0.4592754, !
 0.4327437, 0.407325, 0.382981, 0.3596745, 0.3373697, 0.3160312, !

 0.2956253, 0.2761188, 0.2574798, 0.2396769, 0.2226802, 0.2064602, !
 0.1909885, 0.1762376, 0.1621807, 0.1487919, 0.1360459, 0.1239184, !
 0.1124378, 0.1017038, 0.09166772, 0.08228429, 0.07351105, 0.06530831, !
 0.05763897, 0.05046835, 0.04376402, 0.03749565, 0.0316349, 0.02615526, !
 0.02103195, 0.01624179, 0.01176313, 0.007575703, 0.003660574, 0 !
/!

!
•  Maybe replace with
 1, 0.999, 0.998, 0.996, 0.993, 0.990, 0.980. 0.970, 0.960, 0.950,!
 0.940, 0.930, 0.920, 0.910, 0.900, 0.890, 0.880, 0.870,!
!
!
!

Eta Levels

•  For vertical nesting, follow the similar procedure for each
domain.

•  Each domain will need a specification of eta levels

•  The assignment of the single eta_levels array is split into
pieces for easier understanding!

 !
!
!

Eta Levels

 &domains!
 max_dom = 2, !
 e_vert = 35, 45, !

 eta_levels(1:35) = 1., 0.993, 0.983, 0.97, 0.954, 0.934, !
 0.909, 0.88, 0.840, 0.801, 0.761, 0.722, !
 0.652, 0.587, 0.527, 0.472, 0.421, 0.374, !
 0.331, 0.291, 0.255, 0.222, 0.191, 0.163, !
 0.138, 0.115, 0.095, 0.077, 0.061, 0.047, !
 0.035, 0.024, 0.015, 0.007, 0. !

eta_levels(36:81) = 1.0000, 0.9946, 0.9875, 0.9789, 0.9685, !
 0.9562, 0.9413, 0.9238, 0.9037, 0.8813, !
 0.8514, 0.8210, 0.7906, 0.7602, 0.7298, !
 0.6812, 0.6290, 0.5796, 0.5333, 0.4901, !
 0.4493, 0.4109, 0.3746, 0.3412, 0.3098, !
 0.2802, 0.2524, 0.2267, 0.2028, 0.1803, !

 0.1593, 0.1398, 0.1219, 0.1054, 0.0904, !
 0.0766, 0.0645, 0.0534, 0.0433, 0.0341, !
 0.0259, 0.0185, 0.0118, 0.0056, 0.!
 vert_refine_method = 0, 2, !
!
!

Metgrid Flags

•  The real program and the WRF model are able to
communicate directly through the Registry file

•  The real program is only able to talk with the Metgrid
program through the input data stream

•  Specific information about the incoming data is contained
in special flags that the user may set in the Metgrid table
file – usually, related to THIS VARIABLE EXISTS

==!
name=PMSL!
 interp_option=sixteen_pt+four_pt+average_4pt!
 flag_in_output=FLAG_SLP!
==!

Metgrid Flags

> ncdump -h met_em.d01.2000-01-24_12:00:00.nc | grep FLAG!
! !:FLAG_METGRID = 1 ;!
! !:FLAG_EXCLUDED_MIDDLE = 0 ;!

! !:FLAG_SOIL_LAYERS = 1 ;!
! !:FLAG_SNOW = 1 ;!
! !:FLAG_PSFC = 1 ;!
! !:FLAG_SM000010 = 1 ;!
! !:FLAG_SM010040 = 1 ;!
! !:FLAG_SM040100 = 1 ;!

! !:FLAG_SM100200 = 1 ;!
! !:FLAG_ST000010 = 1 ;!
! !:FLAG_ST010040 = 1 ;!
! !:FLAG_ST040100 = 1 ;!
! !:FLAG_ST100200 = 1 ;!
! !:FLAG_SLP = 1 ;!

! !:FLAG_TAVGSFC = 1 ;!
! !:FLAG_QNWFA = 1 ;!
! !:FLAG_QNIFA = 1 ;!
! !:FLAG_SOILHGT = 1 ;!
! !:FLAG_MF_XY = 1 ;!

Metgrid Flags

•  The real program uses this information when deciding how
to do many operations:
–  Is the input from Metgrid?
–  Method to compute surface pressure
–  Use RH vs mixing ratio vs specific humidity

computations
–  Excluded middle processing
–  Average surface air temperature for lake temperatures
–  Water/Ice friendly vertical interpolation
–  Which levels of soil data are present

•  All flags for the Metgrid to real data transfer are contained
in share/module_optional_input.F

Metgrid Flags

 flag_slp = 0!
!
 flag_name(1:8) = 'SLP ’!
 CALL wrf_get_dom_ti_integer (fid, 'FLAG_' // &!
 flag_name, itmp, 1, icnt, ierr)!
 IF (ierr .EQ. 0) THEN!
 flag_slp = itmp!
 END IF!

Adding a Variable for Vertical Interpolation

•  This process is manual

•  Every new input 3d variable that needs to be interpolated
needs to have an explicit block of code added

•  Mass-point variables (such as would be used in all physics
schemes) are straight forward, as they may be largely
copied using the existing templates already in place

•  Most vertical interpolation options are supplied from the
namelist.input file

•  All interpolation is handled in dry pressure

Adding a Variable for Vertical Interpolation

CALL vert_interp (grid%t_gc , grid%pd_gc , &!
 grid%t_2 , grid%pb , &!
 grid%tmaxw , grid%ttrop , grid%pmaxw , grid%ptrop , &!
 grid%pmaxwnn , grid%ptropnn , &!
 flag_tmaxw , flag_ttrop , &!
 config_flags%maxw_horiz_pres_diff , &!
 config_flags%trop_horiz_pres_diff , &!
 config_flags%maxw_above_this_level , &!
 num_metgrid_levels , 'T' , &!
 interp_type , lagrange_order , t_extrap_type , &!
 lowest_lev_from_sfc , use_levels_below_ground , &!
 use_surface , zap_close_levels , force_sfc_in_vinterp , &!
 ids , ide , jds , jde , kds , kde , &!
 ims , ime , jms , jme , kms , kme , &!
 its , ite , jts , jte , kts , kte)!

Tracers

•  The WRF model is able to advect arrays of passive scalars (tracer 4d
array)

•  As with all other variables going into the WRF model, this data is
available to be set in the real program

•  These variables must be coordinated with the Registry names, as the
tracer index is an automatically manufactured name

Tracer Scalars!
#!
state real tr17_1 ikjftb tracer 1 - irhusdf=(bdy_interp:dt) \!

!"tr17_1" "tr17_1" "Dimensionless"!

Tracers

•  As with all 4d arrays, no space is allocated unless the packaged
variables are requested for processing at run-time

package tracer_test1 tracer_opt==2 - tracer:tr17_1!

Tracers

! Template for initializing tracer arrays. !
! A small plane in the middle of the domain at !
! lowest model level is defined.!
!
IF (config_flags%tracer_opt .eq. 2) THEN!
 DO j = (jde + jds)/2 - 4, (jde + jds)/2 + 4, 1!
 DO i = (ide + ids)/2 - 4, (ide + ids)/2 + 4, 1!
 IF ((its .LE. i .and. ite .GE. i) .and. & !
 (jts .LE. j .and. jte .GE. j)) THEN!
 tracer(i, 1, j, P_tr17_1) = 1.!
 END IF !
 END DO !
 END DO !
END IF!

Trajectories

•  The user may specify specific (i,j,k) locations in the model domain
to follow parcels: traj_i, traj_j, traj_k (hard coded in the
module_initialize_real.F file)

•  The current number of trajectory locations is small, 25, and is a run-
time option that the user sets in the nml file

&domain!
 num_traj = 25,!
!
&physics!
 traj_opt = 1,!

Trajectories

•  The trajectory code uses the lat,lon locations, so the initial (i,j) value
of the lat,lon is assigned

IF (config_flags%num_traj .gt. 0 .and. !
 config_flags%traj_opt .gt. 0) THEN!
 DO j = (jde + jds)/2 - 2, (jde + jds)/2 + 2, 1 !
 DO i = (ide + ids)/2 - 2, (ide + ids)/2 + 2, 1!
 IF (its .LE. i .and. ite .GE. i .and. &!
 jts .LE. j .and. jte .GE. j) THEN!
 grid%traj_i (icount) = i!
 grid%traj_j (icount) = j!
 grid%traj_k (icount) = 10!
 grid%traj_lat (icount) = grid%xlat(i,j)!
 grid%traj_long(icount) = grid%xlong(i,j)!
 END IF!

Options

•  When there are strong normal topo gradients along the outer rows
and columns of the most-coarse domain, smoothing the topography
to match the incoming first guess data is a good idea.

•  This is the same sort processing that is done to make the child and
parent domains more consistent in the area of the LBC forcing

&domains!
 smooth_cg_topo = .true.!
/!

Real program in a nutshell: PART 2

•  Access to everything
•  Eta levels
•  Metgrid flags
•  Adding a variable for vertical interpolation
•  Vertical interpolation
•  Tracers
•  Trajectories
•  Options

