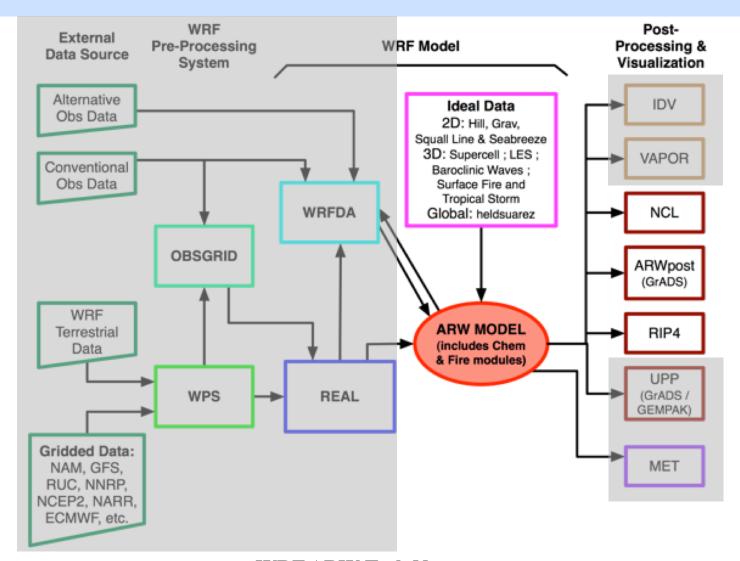
Initialization for Idealized Cases

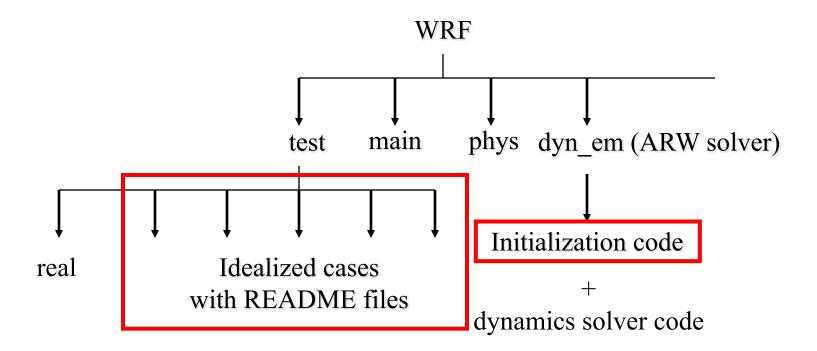

Why do we provide idealized cases?

1. The cases provide simple tests of the dynamics solver for a broad range of space and time scale:

LES - Δx meters, Δt < second; Baroclinic waves - Δx 100 km, Δt = 10 minutes.

- 2. The test cases reproduce known solutions (analytic, converged, or otherwise).
- 3. The cases provide a starting point for other idealized experiments.
- 4. They can be used to test physics development.
- 5. These tests are the easiest way to test the solver.

Idealized Cases: Introduction



WRF ARW Tech Note

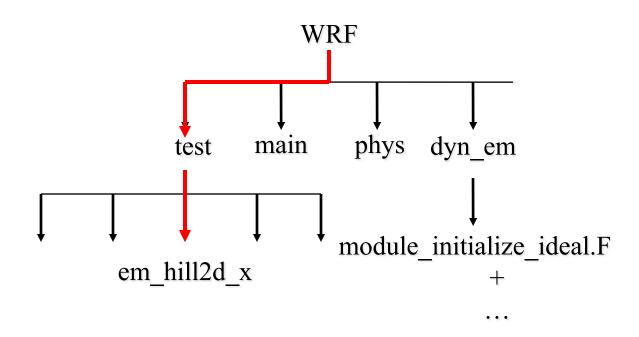
A Description of the Advanced Research WRF Version 4 (March 2019)

http://www2.mmm.ucar.edu/wrf/users/docs/technote/contents.html

WRF ARW code

Idealized Cases: Introduction

Idealized Test Cases for the WRF ARW Model V4.1


- 2D flow over a bell-shaped mountain WRF/test/em_hill2d_x
- 2D squall line (x, z; y, z) WRF/test/em_squall2d_x, em_squall2d_y
- 2D gravity current WRF/test/em_grav2d_x
- 2D sea-breeze case *WRF/test/em_seabreeze2d_x*
- 3D large-eddy simulation case *WRF/test/em les*
- 3D quarter-circle shear supercell thunderstorm WRF/test/em_quarter_ss
- 3D tropical cyclone *WRF/test/em_tropical_cyclone*
- 3D baroclinic wave in a channel *WRF/test/em_b_wave*
- 3D global: Held-Suarez case *WRF/test/em_heldsuarez*
- 1D single column test configuration WRF/test/em_scm_xy
- 3D fire model test cases *WRF/test/em_fire*
- 3D convective radiative equilibrium test *WRF/test/em_convrad*

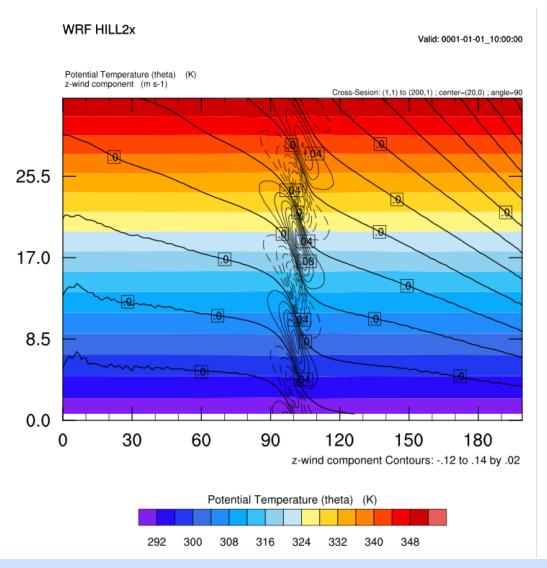
Running a test case: *em_hill2d_x* example

2D Flow Over a Bell-Shaped Mountain

Initialization module: dyn em/module initialize ideal.F

Case directory: test/em_hill2d_x

From the WRF main directory:


- > configure (choose *serial* build, *no nesting* option)
- > compile em_hill2d_x

Move to the test directory:

- > cd test/em_hill2d_x
- > ideal.exe (this produces the ARW initial conditions)
- > wrf.exe (executes ARW)

Finish by plotting output using scripts downloaded from the ARW website (wrf_Hill2d.ncl)

$$(dx = 2km, dt=20s, T=10 h, wrf_Hill2d.ncl)$$

What happens during the initialization

Initialization code: WRF/dyn_em/module_initialize_ideal.F

• Idealize test specifics are enabled in the code using the Fortran CASE construct.

```
SELECT CASE ( model_config_rec%ideal_case )
CASE ( hill2d_x )
```

- Model levels are set within the initialization to produce a stretched η coordinate (close to equally spaced z), or equally spaced η coordinate.
- Terrain is set in the initialization code
- A single sounding (z, θ, Q_v, u and v) is read in from WRF/test/em_hill2d_x/input_sounding
- Sounding is interpolated to the ARW grid, equation of state and hydrostatic balance used to compute the full thermodynamics state.
- Wind fields are interplolated to model η levels.

3D meshes are always used, even in 2D (x,z; y,z) cases. The third dimension contains only 5 planes, the boundary conditions in that dimension are periodic, and the solutions on the planes are identical in the initial state and remain so during the integration.

Setting the terrain heights

In WRF/dyn_em/module_initialize_ideal.F

```
CASE (hill2d_x)

DO j=jts,jte

Set height DO i=its,ite

field 

grid%ht(i,j) = hm/(1.+(float(i-icm)/xa)**2)

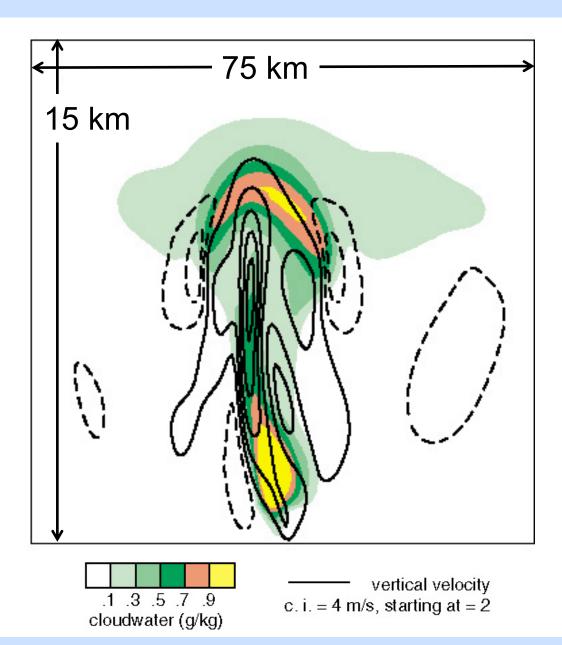
grid%phb(i,1,j) = g*grid%ht(i,j)

grid%php(i,1,j) = 0. | lower boundary condition

grid%ph0(i,1,j) = grid%phb(i,1,j)

ENDDO

ENDDO
```


Sounding File Format

File: WRF/test/em_quarter_ss/input_sounding

	surface Pressure (mb)	surface potential Temperature (K)	surface vapor mixing ratio (g/kg)		
line 1 \longrightarrow	1000.00	300.00	14.00		
	250.00	300.45	14.00	-7.88	-3.58
. /	750.00	301.25	14.00	-6.94	-0.89
each /	1250.00	302.47	13.50	-5.17	1.33
successive	1750.00	303.93	11.10	-2.76	2.84
line is a	2250.00	305.31	9.06	0.01	3.47
point in the	2750.00	306.81	7.36	2.87	3.49
sounding	3250.00	308.46	5.95	5.73	3.49
	3750.00	310.03	4.78	8.58	3.49
	4250.00	311.74	3.82	11.44	3.49
	4750.00	313.48	3.01	14.30	3.49
	height (m)	potential temperature (K)	vapor mixing ratio (g/kg)	U (west-east) velocity (m/s)	V (south-north velocity (m/s)
				• •	•

Idealized Cases: 2d squall line

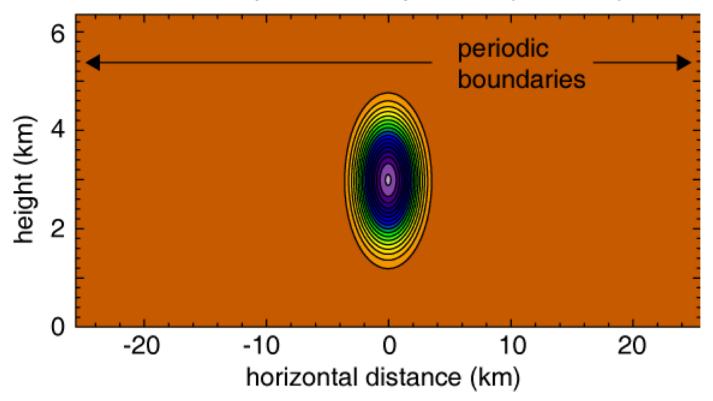
Squall-line simulation T = 3600 s $\Delta x = \Delta z = 250 \text{ meters}$ $v = 300 \text{ m}^2/\text{s}$

Idealized Cases: 2d squall line

squall2d_x is (x,z), squall2d_y is (y,z); both produce the same solution.

Initialization code is in WRF/dyn_em/module_initialize_ideal.F
This code also introduces the initial perturbation.

The thermodynamic soundings and hodographs are in the ascii input files WRF/test/em squall2d x/input sounding

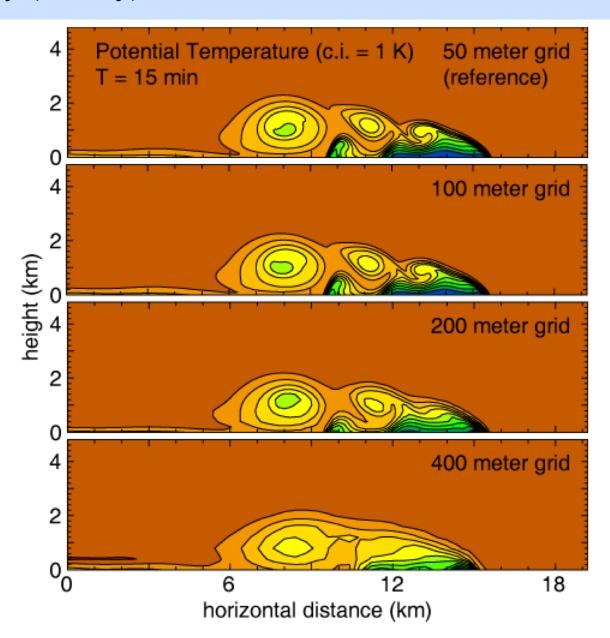

WRF/test/em_squall2d_y/input_sounding

Idealized Cases: 2d gravity (density) current

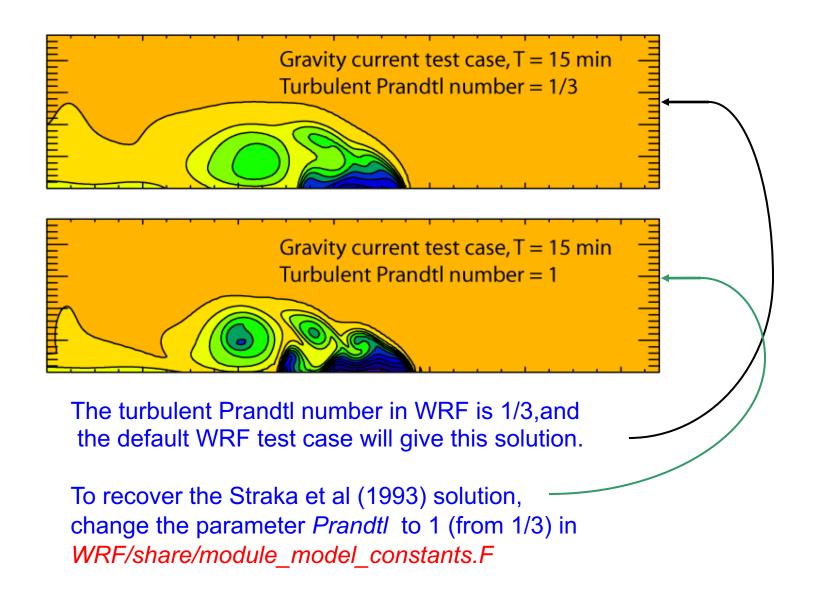
(Straka et al, IJNMF, 1993)

2D channel (x , z ; 51.2 x 6.4 km)
Initial state: theta = 300 K (neutral) + perturbation (max = 16.2 K)
Eddy viscosity = 75 m**2/s (constant)

Initial state, potential temperature (c.i. = 1 K)

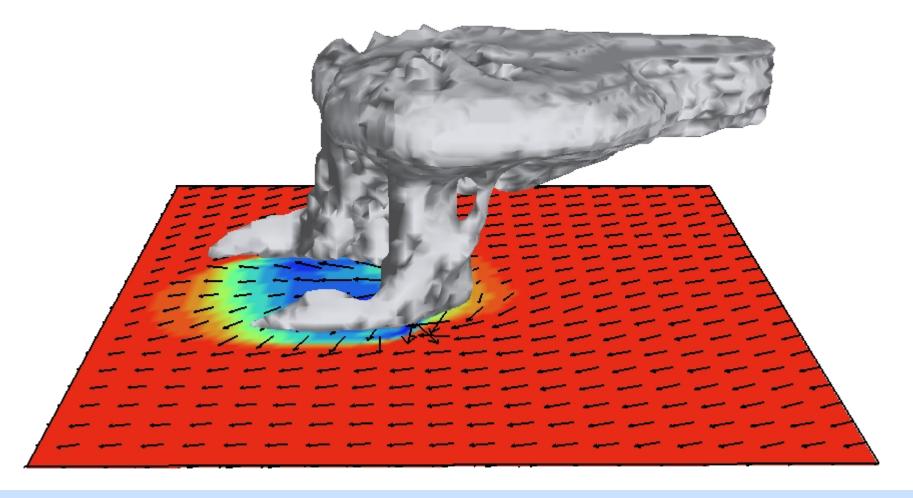


Idealized Cases: 2d gravity (density) current


Default case, dx = 100 m, 5th order upwind advection, uses namelist.input.100m

dx = 200 m, 5th order upwind advection, use namelist.input.200m

dx = 400 m, 5th order upwind advection, use namelist.input.400m


Idealized Cases: 2d gravity (density) current

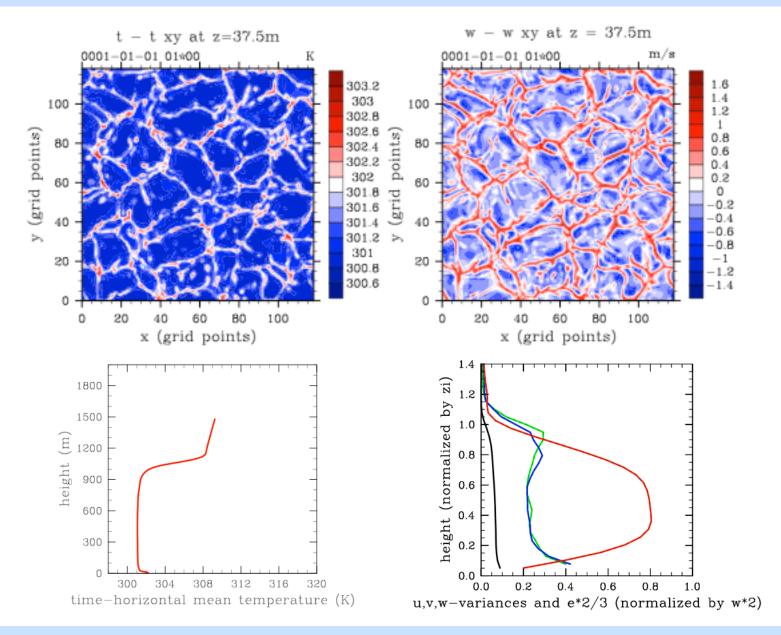
Idealized Cases: 3d supercell thunderstorm

Height coordinate model

(dx = dy = 2 km, dz = 500 m, dt = 12 s, 160 x 160 x 20 km domain)Surface temperature, surface winds and cloud field at 2 hours

Idealized Cases: 3d Large Eddy Simulation (LES)

Initialization code is in WRF/dyn_em/module_initialize_ideal.F


Test case directory is in WRF/test/em les

The default case is a large-eddy simulation of free convective boundary layer with no winds. The turbulence of the free CBL is driven and maintained by namelist-specified surface heat flux.

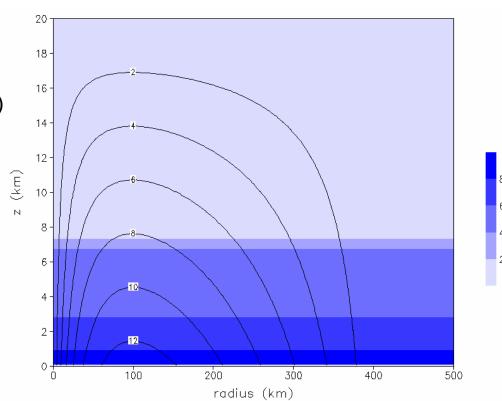
An initial sounding with mean winds is also provided.

Reference: Moeng et al. 2007 MWR

Idealized Cases: 3d Large Eddy Simulation (LES)

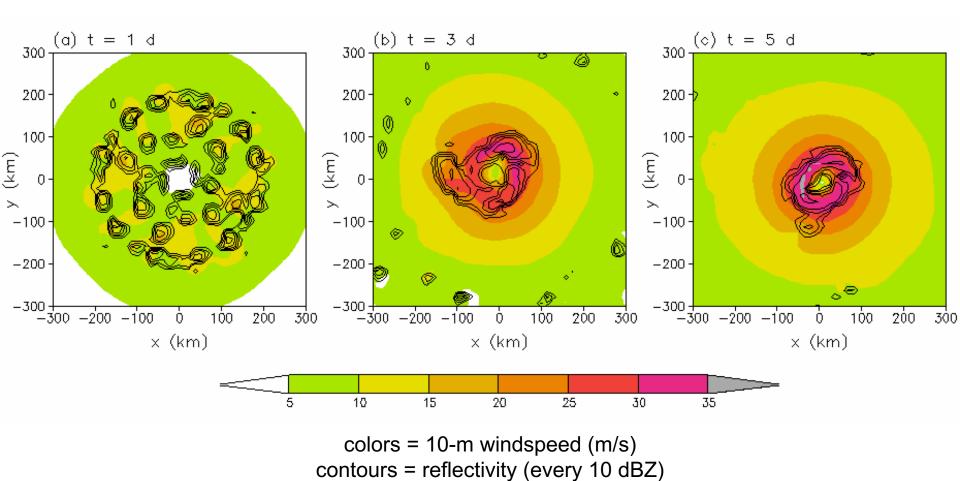
Idealized Cases: 3d tropical cyclone

Default vortex:

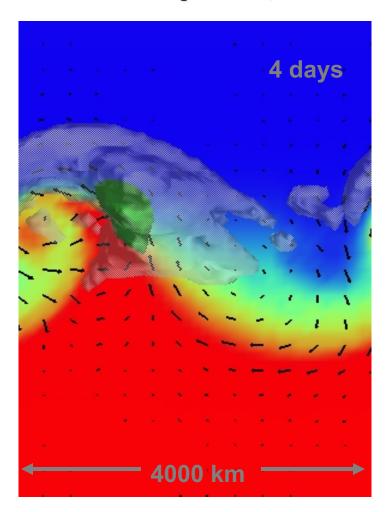

- weak (12.9 m/s) axisymmetric analytic vortex (Rotunno and Emanuel, 1987, JAS)
- placed in center of domain
- in "module_initialize_tropical_cyclone.F" users can modify initial size and intensity (see parameters r0, rmax, vmax, zdd)

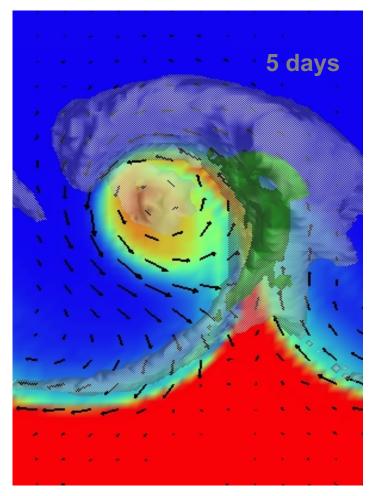
Default environment:

- mean hurricane sounding from Jordan (1958, J. Meteor.)
- SST = 28 degrees C
- $f = 5e-5 s^{-1}$ (20 degrees North)


Default domain:

- 3000 km x 3000 km x 25 km domain
- default dx,dy is only 15 km: useful for quick tests of new code (i.e., new physics schemes); research-quality studies should use smaller dx,dy


colors = relative humidity (%) contours = azimuthal velocity (m/s)


Idealized Cases: 3d tropical cyclone

Idealized Cases: baroclinic wave in a channel

Height coordinate model (dx = 100 km, dz = 250 m, dt = 600 s) Surface temperature, surface winds, cloud and rain water

Idealized Cases: baroclinic wave in a channel

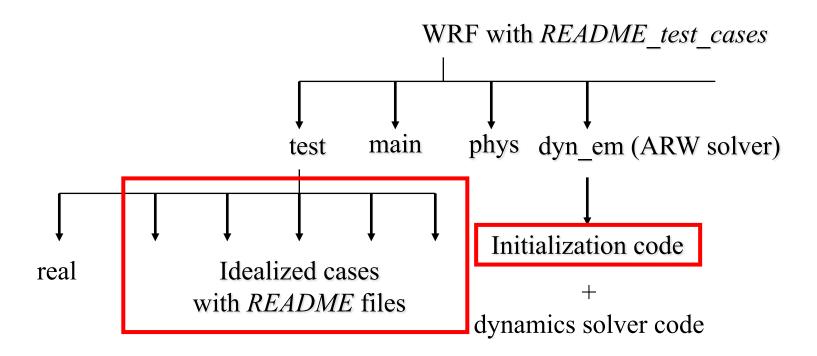
Initialization code is in WRF/dyn_em/module_initialize_ideal.F

The initial jet (y,z) is read from the binary input file WRF/test/em b wave/input jet

The initial perturbation is hardwired in the initialization code.

Idealized Cases: baroclinic wave in a channel

Default configuration in WRF/test/em_b_wave/namelist.input runs the dry jet in a periodic channel with dimension (4000 x 8000 x 16 km) (x,y,z).


Turning on any microphysics (mp_physics > 0 in namelist.input) puts moisture into the model state.

The initial jet only works for dy = 100 km and 81 grid points in the y (south-north) direction.

Idealized Cases: More information

Descriptions:

WRF/README_test_cases
WRF/test/em_*/README

Idealized Cases

Idealized Test Cases for the WRF ARW Model V4.1

- 2D flow over a bell-shaped mountain *WRF/test/em_hill2d_x*
- 2D squall line (x, z; y, z) WRF/test/em_squall2d_x, em_squall2d_y
- 2D gravity current WRF/test/em_grav2d_x
- 2D sea-breeze case *WRF/test/em_seabreeze2d_x*
- 3D large-eddy simulation case *WRF/test/em_les*
- 3D quarter-circle shear supercell thunderstorm *WRF/test/em_quarter_ss*
- 3D convective radiative equilibrium test *WRF/test/em_convrad*
- 3D baroclinic wave in a channel *WRF/test/em_b_wave*
- 3D global: Held-Suarez case WRF/test/em_heldsuarez and dyn em/module initialize heldsuarez.F
- 1D single column test configuration *WRF/test/em_scm_xy* and *dyn_em/module_initialize_scm.F*
- 3D fire model test cases WRF/test/em_fire and dyn_em/module_initialize_fire.F
- 3D tropical cyclone WRF/test/em_tropical_cyclone and dyn em/module initialize tropical cyclone.F

These cases are initialized using dyn_em/ module initialize ideal.F