WRF Data, Utilities & Post-processing

Kelly Werner October 2019

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Input Data

Input Data: Mandatory Fields

3D Data (for data on constant pressure levels)

Temperature U and V components of wind Geopotential height Relative Humidity (or Specific Humidity)

3D Data (for data on native model levels)

Temperature U and V components of wind Geopotential height Relative Humidity (or Specific Humidity) Pressure

2D Data

Surface pressure Mean sea-level pressure Skin temperature/SST 2 meter temperature and relative humidity 10 meter U and V components of wind Soil data (temperature and moisture) and soil height

* Recommended Fields

LANDSEA mask field for input data Water equivalent snow depth SEAICE Additional SST data

External Data Sources: Global

Name	Resolution	Coverage	Temporal Availability	Website
NCEP/NCAR Reanalysis (R1/NNRP)	209 km 6-hourly	Global	Jan 1948 - present	http://rda.ucar.edu/d atasets/ds090.0
NCEP/DOE Reanalysis (R2)	209 km 6-hourly	Global	Jan 1979 - present	http://rda.ucar.edu/d atasets/ds091.0
ERA Interim Data	1.125° - 0.703° 6-hourly	Global	Jan 1979 - present	http://rda.ucar.edu/d atasets/ds627.0
ECMWF's Operational Model Analysis	Varying		Jan 2011 - present	http://rda.ucar.edu/d atasets/ds113.0
NCEP GDAS/FNL Reanalysis	0.25° 6-hourly	Global	July 2015 - present	http://rda.ucar.edu/d atasets/ds083.3
GFS Real-time	1°	Global		ftp://ftpprd.ncep.noa a.gov/pub/data/nccf/ com/gfs
NCEP GFS/FNL Reanalysis	1° 6-hourly	Global	Aug 1999 - present	http://rda.ucar.edu/d atasets/ds083.2
GFS Gridded Model Data	0.5° 24-hourly	Global	Dec 2002 - present	http://rda.ucar.edu/d atasets/ds335.0
NCEP GFS 0.25°	0.25° 3-hourly & 12-hourly	Global	Jan 2015 - present	http://rda.ucar.edu/d atasets/ds084.1

External Data Sources: North America

Name	Resolution	Coverage	Temporal Availability	Website
NAM Real-time	32/12 km 6-hourly	North America		ftp://ftpprd.ncep. noaa.gov/pub/dat a/nccf/com/nam
NAM Analysis	12 km 6-hourly	North America	Jan 2012 - present	http://rda.ucar.ed u/datasets/ds609. 0
GCIP NCEP Eta	40 km 3-hourly & 6- hourly	North America	April 1995 - present	http://rda.ucar.ed u/datasets/ds609. 2
NCEP NARR	32 km 3-hourly	North America	Nov 1979 - present	http://rda.ucar.ed u/datasets/ds608. 0

External Data Sources: Climate

Name	Resolution	Coverage	Temporal Availability	Website
NCEP Climate Forecast System Reanalysis (CFSR)	0.3° to 2.5° 6-hourly	Global	Jan 1979 - Dec 2010	http://rda.ucar.edu/da tasets/ds093.0
NCEP Climate Forecast System Reanalysis II (CFSv2)	0.2° to 2.5° 6-hourly	Global	Jan 2011 - present	http://rda.ucar.edu/da tasets/ds094.0
NCAR CESM CMIP5 data (netCDF format)	6-hourly	Global	Jan 1950 - 2100	http://rda.ucar.edu/da tasets/ds316.0
NCAR CESM CMIP5 data (IM - Bias Corrected)	6-hourly	Global	Jan 1951 - 2100	http://rda.ucar.edu/da tasets/ds316.1
SST DATA				
NCEP SST Analysis	1° - 1/12°	Global		http://polar.ncep.noaa .gov/sst
NOMAD3 SST	1° - 0.25°	Global	Jan 1854 - present (depending which product)	http://nomads.ncdc.no aa.gov/data.php
NCEP & NCDC Reconstructed SST	1°-2°	Global	Jan 1854 - Dec 2015	http://rda.ucar.edu/da tasets/ds277.0

External Data Sources: RDA

http://www2.mmm.ucar.edu/wrf/users/download/free_data.html

Available GRIB Datasets from NCAR					
Dataset	Spatial Resolution	Temporal Resolution	Temporal Availability	Vtable	
NCEP Final Analysis (GFS-FNL) ds083.0	2.5 degree	12-hourly	1997-04-01 to 2007- 06-30		
<u>NCEP Final Analysis</u> (<u>GFS-FNL)</u> ds083.2	1 degree	6-hourly	1999-07-30 to current	<u>Vtable.GFS</u>	
NCEP GDAS Final Analysis ds083.3	0.25 degree	6-hourly	2015-07-08 to current		
NCEP GFS ds084.1	0.25 degree	3-hourly (for first 240 hrs) 12-hourly (hrs 240-384)	2015-01-15 to current		
NCEP/NCAR Reanalysis (NNRP) ds090.0	209 km	6-hourly	1948-01-01 to current	<u>Vtable.NNRP</u>	
NCEP Climate Forecast System Reanalysis (CFSR) ds093.0	0.3, 0.5, 1.0, 1.9, & 2.5 degree	6-hourly	1979-01-01 to 2011- 01-01	Vtable.CFSR_press_pgbh06	
NCEP Climate Forecast System Version 2 (CFSv2) ds094.0	0.2, 0.5, 1.0, and 2.5 degree	6-hourly	2011-01-01 to current	Vtable.CFSR_sfc_flxf06	
ECMWF Operational Model Analysis ds113.0	varying		2011-01-01 to current	Vtable.ECMWF	
NCEP North American Mesoscale (NAM) ds609.0	12 km	6-hourly	2012-01-01 to current	Vtable.NAM	

External Data Sources: RDA

http://rda.ucar.edu

External Data Sources: NOMADS

http://nomads.ncdc.noaa.gov

NOAA National Operational Model Archive & Distribution System

Data Access

Inventory

Documentation User Guide

NCDC Model Data Pages

NOMADS Project

Partners

Publications & Presentations

Service Records Retention System

Plans for the National Climate Model Portal

Contact Us Contact Info The NOAA National Operational Model Archive and Distribution System (NOMADS) is a Web-services based project providing both real-time and retrospective format independent access to climate and weather model data.

Update: 11.10.15

Website appearance changes. We are upgrading our web appearance. <u>Click</u> <u>here</u> to view our new pages.

Important Notice: 12.17.15

Plot | FTP4U and offline ordering change.

Our offline ordering interface has transitioned from the Plot | FTP4U system to the <u>HAS</u> <u>website</u>. Links to the HAS website for each product have been added to the NOMADS Data Access page. The Plot | FTP4U system is still available for online data. NAM GFS RUC CFS NARR R1/R2 SST

DOC » NOAA » NESDIS » NCEI » NOMADS

Search NCEI

Protecting Your Privacy

USA.gov

Disclaimer

Utilities

- Grib and Intermediate Data
- Designing a model domain
- netCDF tools
- Other Utilities
- ImageMagick
- Special WRF Output Variables
- OBSGRID
- MET

GRIB Data Handling

Documents

- https://rda.ucar.edu/index.html#gribdoc (GRIB1 data)
- https://rda.ucar.edu/index.html#grib2doc (GRIB2 data)

Decoders

wgrib, wgrib2, unpackgrib2.c, grib2to1.c

http://rda.ucar.edu/#!GRIB

http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html

http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2

- g1print.exe and g2print.exe
 - Show data available in GRIB1 and GRIB2 files
 - Available from util/ directory in WPS

GRIB Data Handling (cont'd)

grib2ctl.pl

• Create .ctl and .idx files, so that you can plot GRIB files with GrADS

<u>http://www.cpc.ncep.noaa.gov/products/wesley/grib2ctl.html</u>

ncl_convert2nc

Converts from grib format to netcdf format

http://www.ncl.ucar.edu/Document/Tools/ncl_convert2nc.shtml

Writing Intermediate File Format

• http://www2.ucar.edu/wrf/users/docs/user_guide_V4/v4.0/users_guide_chap3.html#_W riting_Meteorological_Data

wrf_wps_write_int

ont - True

FIELD = "SST" UNITS = "K" DESC = "Sea Surface Temperature"

opt@map_source	= "ERA-I Data"
opt@projection	= 0
opt@startloc	= "SWCORNER"
opt@startlon	= 0.0
opt@startlat	= -90.0
opt@deltalon	= 1.25
opt@deltalat	= 0.942408
opt@is_wind_earth_relative	= False
opt@date	= "2015-07-26_00:00:00"
opt@level	= 200100.

wrf_wps_wrtie_int(IM_name,FIELD,UNITS,DESC,VAR(:,:),opt)

Fortran script to convert netCDF to Intermediate format:

http://www2.mmm.ucar.edu/wrf/users/special_code.html

Reading Intermediate Format Files

NCL Code

1	wrf_	_wps_	_read_	_int
---	------	-------	--------	------

! opens file

```
istatus = wrf_wps_open_int(filename)
```

! reads header

```
wrf_wps_rdhead_int(istatus,head_real,fiel d,hdate, \
```

units, map_source, desc)

! reads slab

```
Slab = wrf_wps_rddata_int(istatus,nx,ny)
```

! Loop until reaching the end of the file

Found in WPS/util/

```
rd_intermediate
FIELD = TT
UNITS = K DESCRIPTION = TEMPERATURE
DATE = 2000-01-24 12:00:00 FCST = 0.000000
SOURCE = unknown model from NCEP GRID 212
LEVEL = 200100.000000
I, J DIMS = 185, 129
IPROJ = 1
   REF X, REF Y = 1.000000, 1.000000
   REF LAT, REF LON = 12.190000, -133.459000
   DX, DY = 40.635250, 40.635250
   TRUELAT1 = 25.000002
DATA(1,1) = 295.910950
```


Utility: plotfmt

The plotfmt program plots the fields in the ungribbed intermediate files

ncl plotfmt.ncl `filename="FNL:2007-09-15 00"'

Found in WPS/util/

Plot Intermediate Files in netCDF Format

- Use the utility int2nc.exe
 - Converts intermediate files created by ungrib.exe to netcdf format
 - ./int2nc.exe FILE:yyyy-mm-dd_hh
- To plot: plotfmt_nc.ncl

ncl plotfmt_nc.ncl `inputFILE="FNL:YYYY-MM-DD_HH.nc"'

Plot Using ncview

*Both are found in WPS/util/

Model Domain Design

Model Domain Design

http://www2.mmm.ucar.edu/wrf/users/special_code.html

netCDF Tools

NCO Tools

http://nco.sourceforge.net

netCDF Operators:

- command-line programs
- take netCDF input -> perform operatation -> output in various formats (text, binary, netCDF, etc.)

Examples:

- ncdiff
 - Shows the differences between 2 files ncdiff input1.nc input2.nc diff.nc

ncrcat (nc cat)

 Writes specified variables/times to a new file, or concatenates files ncrcat file1.nc file2.nc combined.nc ncrcat -d Time,0,231 -v RAINNC wrfout* RAINNC.nc

ncra (nc average)

 Averages variables in files and writes to a new file ncra -v T2 file1.nc file2.nc -o T2.nc ncra -v T2 wrfout* -o T2.nc

NCO Tools (continued)

http://nco.sourceforge.net

ncrename

Renames variables, dimensions, attributes

ncrename -v LANDUSE,LAND -a missing_value,_FillValue
file.nc

ncks (nc kitchen sink)

- Combination of several NCO tools to allow cutting/pasting subsets of data into a new file
 - Extracting a specific variable

```
ncks -v RAINNC wrfout_d01_2015-06-01_00:00:00 RAINNC.nc
```

```
    Splitting files
```

```
ncks -d Time,1,1 wrfout -o wrfout1.nc
```


NCO Tools: Other Available Operators

- ncap2: arithmetic processor
- ncatted: ATTribute editor
- ncbo: binary operator (includes ncadd, ncsubtract, ncmultiply, ncdivide)
- ncea: ensemble averager
- ncecat: ensemble conCATenator
- ncflint: FiLe INTerpolator
- ncpdq: permute dimensions quickly, pack data quietly
- ncwa: weighted averager

ncview

http://meteora.ucsd.edu/~pierce/ncview_home_page.html

- Graphical interface that allows quick viewing of netCDF files
 - All variables found in file
 - Detect where things go wrong

Other options

- Time series
- Vertical Cross Section
- Any netCDF format file: geo_em.d0* met_em.d0* wrfinput_d0* wrfout.d0* wrfout.d0*

ncview

0 0 0 🔀 Ncview 1.93
Noview 1.93g David W. Pierce 24 February 2009
variable=HGT
rame 1/1 (136749605 bnds:3.57019e-264 -> 1.88836e-307)
displayed range: -63.8264 to 3459.44 m
Current: (i=17, j=68) 9.96921e+36 (x=-113.1825, y=48.2066)
Quit ->1 () Edit ? Delay: Opts
3gauss Inv P Inv C M X5 Linear Axes Range Bi-lin Print
○ ○ ○ X Set Options
Overlays:
◇ None
○ 0.8 degree coastlines
○ 0.08 degree coastlines
USA states
○ custom
Click to select custom overlay file
Method to use when shrinking data:
Average (Mean)
 Most common value (Mode)

- Beginning WRFV3.7
- Works with wrfinput* and wrfout* files
- Must have 1 time period per file i.e, frames_per_outfile = 1

ncBrowse

http://www.epic.noaa.gov/java/ncBrowse/

ncdump

- Reads a netCDF dataset and prints information from that dataset
- ncdump -h file
 - Prints header (inclusive list of variables in the file)
- ncdump -v VAR file
 - Prints specific data for the variable 'VAR'
- ncdump -v Times file
 - Prints the times that are included in the file

ncdump -v Times file

```
netcdf wrfout d01 2000-01-24 12:00:00 {
dimensions:
        Time = UNLIMITED ; // (3 currently)
        DateStrLen = 19 ;
        west east = 73;
        south north = 60 ;
        west east stag = 74 ;
        bottom top = 27;
        south north stag = 61;
        bottom top stag = 28 ;
variables:
        char Times(Time, DateStrLen) ;
        float LU INDEX(Time, south north, west east) ;
                LU INDEX: FieldType = 104 ;
                LU INDEX:MemoryOrder = "XY ";
        LU INDEX: description = "LAND USE CATEGORY" ;
                LU INDEX:units = "" ;
                LU INDEX:stagger = "" ;
.....
.....
global attributes:
                 :TITLE = " OUTPUT FROM WRF V3.4.1 MODEL";
                 :START DATE = "2000-01-24 12:00:00";
                :WEST-EAST GRID DIMENSION = 74 ;
                :SOUTH-NORTH GRID DIMENSION = 61 ;
                 :BOTTOM-TOP GRID DIMENSION = 28 ;
                :DX = 30000.f;
                :DY = 30000.f;
.....
.....
data:
 Times =
  "2000-01-24 12:00:00",
  "2000-01-24 18:00:00",
  "2000-01-25 00:00:00"
```


Other Utilities

Additional utilities

- read_wrf_nc: reads WRF netCDF file, outputs various data
- iowrf: extracts a box from WRF netCDF files, thin or destagger data
- wrf_interp: interpolates WRF output files to pressure, height-agl, height-msl, potential temp, and equivalent potential temp, and can perform underground extrapolation
- p_interp: converts wrfout data (from sigma levels) to pressure levels
- v_interp: adds vertical levels in WRF input and boundary files
- diffwrf: performs several functions, including making comparisons of two WRF files (available in WRF/external/io_netcdf/)
- For more details on the above utilities, see:

http://www2.mmm.ucar.edu/wrf/users/utilities/util.htm

To download utilities:

http://www2.mmm.ucar.edu/wrf/users/download/get_sources.html

ImageMagick

http://www.imagemagick.org

Converts graphical files from one format to another

convert file.pdf file.png
convert file.png file.bmp

- Many options available
 - Rotate frames, trim white space, etc.
 - 2 ways to use
 - 1) display plot.png
 - 2) Convert -trim +repage -background white -flatten plot.pdf plot.png
- Can make movies
 - Can create individual frames for each image
- Maintains high resolution great for publishing!
- Cannot deal with .ncgm files

Special WRF Output Variables

 The WRF model outputs the state variables defined in the Registry file, and these state variables are used in the model's prognostic equations. Some of these variables are perturbation fields and therefore, the following definitions for reconstructing meteorological variables are necessary:

Total geopotential	PH + PHB	
Total geopotential height in m	(PH + PHB) / 9.81	
Total potential temp in K	T + 300	
Total pressure in mb	(P + PB) * 0.01	
Wind components, grid relative	U, V	
Surface pressure in Pa	Psfc	
Surface winds, grid relative	U10, V10 (valid at mass points)	
Surface temp and mixing ratio	T2, Q2	

See WRF/Registry/Registry.EM_COMMON for description of variables

OBSGRID

OBSGRID

- To improve a first-guess gridded analysis by incorporating additional observational information
 - Traditionally first-guess analysis came from low-resolution global analysis and forecast grids
 - These days, higher-resolution, regional scale analyses are more readily available
- When is this method useful?
 - When using very coarse resolution first-guess input data
 - If you conducted a field campaign and have acquired very high-resolution station data (for example)

OBSGRID: Basic Concept

OBSGRID: How to Run

Get the source code

http://www2.mmm.ucar.edu/wrf/users/downloads.html

- Compile (serially)
- Prepare observation files
- Edit the namelist.oa
- Link in met_em* files from WPS
- Run the program
 - ./obsgrid.exe
- Check your output

See the WRF Users' Guide for detailed information: http://www2.mmm.ucar.edu/wrf/users/ docs/user_guide_V4/v4.0/users_guide_c hap7.htm

OBSGRID: Output

metoa_em*

- Final analysis files at sfc and pressure levels
- Can be used to replace met_em* files during real.exe

wrfsfdda_d0*

- Contains sfc analyses for T, TH, U, V, RH, QV, PSFC, PMSL, and a count of obs within 250 km of each grid point
- Use as input for surface analysis nudging (in &fdda section of namelist, set grid_fdda = 1 and grid_sfdda = 1)

OBS_DOMAIN*01 (e.g., OBS_DOMAIN101, OBS_DOMAIN103)

- Contain list of all observations available to OBSGRID program
- User has option to set values > a specified value to "missing"
- Used during WRF for observational nudging
- Must all be concatenated into a single file (OBS_DOMAIN101)
 - Use 'run_cat_obs_files.csh' to do this

OBSGRID: Output (continued)

qc_obs_raw.d01.YYYY-MM-DD_HH:mm:ss.tttt(.nc)

- Similar to OBS_DOMAINXXX, but raw data, and output is in either ASCII or netCDF format
- ASCII file can be used as input to plotting utility "plot_sounding.exe"
- NetCDF file can be used to plot both station & sounding data

qc_obs_used.d01.YYYY-MM-DD_HH:mm:ss.tttt(.nc)

- Same as above (can be used in the same way), but identical data to OBS_DOMAIN*01 files
- qc_obs_used_earth_relative.d01.YYYY-MM-DD_HH:mm:ss.tttt(.nc)
 - Identical to above, but winds are in an earth-relative framework, rather than model-relative
 - The non-netCDF version can be used as input to MET verification software

plotobs_out.d01.YYYY-MM-DD_HH:mm:ss.tttt

- Lists data by variable and by level
- Each observation used for objective analysis is grouped with all associated observations for plotting or other diagnostic purposes

OBSGRID: Plot Utilities

sounding.ncl (found in util/)

Generates & plots soundings from qc_obs_raw* and qc_obs_used*

station.ncl (found in util/)

creates station plots for each analysis level

MET Verification Software

- Model Evaluation Tools (MET)
- Provides all the basics (e.g., RMSE, bias, skill scores)
- Provides
 - Advanced spatial methods (wavelets, objects)
 - Confidence intervals
- Download it

http://www.dtcenter.org/met/users/downloads/

Support

met_help@ucar.edu

Documentation

http://www.dtcenter.org/met/users/docs/overview.php

Questions?

