
 

 

 

 

 

 

 

 

 
1. Introduction  

A key avenue to improving data assimilation is 

an accurate specification of the error statistics for 
the background forecast, since it determines the 
filtering and propagation of observation 

information.  Many current and past operational 
data assimilation method use long time series of 
previous forecasts to develop spatially 

homogeneous and temporally invariant 
approximations to background error statistics. 
The so-called "NMC method" (Parrish and 

Derber 1992) is widely used to calculate 
background error estimates in 3DVAR and 
4DVAR systems. However a main shortcoming 

of the NMC method is likely to be evolution of 
the statistics of forecast error in the 12-24 (24-48 
h) forecast ranges. For example, background 

error variances for winds tend to be over-
estimated, and spatial correlation scales are too 
large (Fisher, 1999).  

In the present work, we investigate the 
possibilities of using ensemble statistics to 
represent the background error in a limited-area 

3DVAR application. 
 

2. Experiments setup  

WRF forecasts from the 1st to 10th of January 
2002 are used over a continental US domain with 
100km resolution. Sound, Synop, Airep, Pilot, 

Ship, Profiler, SATOB and METAR observations 
have been used in WRF-3DVAR with AVN 
background error statistics based on Wu et al. 

(2002). The differences between 12 and 24-h 
forecasts valid at the same time are used in the 
NMC method. In contrast, ensemble background 

error statistics use ensemble deviations 
(difference between forecasts and ensemble 
mean) to estimate the model error. The 50 

ensemble members are arbitrarily numbered. Two 
different methods are used to generate ENS. 
 

 
 

 
 
 

 
 
 

 
The first set of statistics is based on perturbed 
observations (ENSo experiment). A second set 

uses perturbed observation as well as boundary 
perturbations (ENSb experiment) given by 
random control variable projections using 

3DVAR's covariance model (Barker 2005). 
Boundary perturbations were designed to 
consider the boundaries effects in limited area 

mode and to maximize the ensemble spread.  
The WRF 3DVAR control variable transform 

x’=Uv is in practice composed of a series of 

operations x’=UpUvUhv (Barker et al., 2003) 
which should satisfy B=UU

T
. Vertical (Uv) and 

horizontal (Uh) error covariance are represented 

by empirical orthogonal function (EOFs) and 
recursive filters respectively. Because the control 
variables in WRF 3DVAR are stream function, 

unbalanced velocity potential, unbalanced 
temperature, unbalanced surface pressure and 
pseudo RH (Q divided by background Qs), we 

need to estimate the regression coefficients to 
calculate the balanced part. These regression 
coefficients are defined using stream function as 

a predictor (Wu et al., 2002). Therefore, Up 
means the variable transform processes from the 
control variables to physical variables (u, v, t etc.) 

using balanced coefficients and dynamic 
relationship. This new implementation (CV=5) in 
WRF 3DVAR are different to CV=3 in 2004 

WRF 3DVAR version which uses the recursive 
filter both in horizontal and vertical.  
  

3. Ensemble background error statistics 

Fig. 1 shows the standard deviation of u and T 
forecast errors as a function of vertical level. 

These are calculated from 24-12 h forecast for 
NMC and ensemble deviation for ensemble 
statistics. The largest errors of winds (not shown 

here for v wind) are located at the jet level (sigma 
16: around 300 hPa). The ENSo method 
estimates smaller errors than the NMC approach 
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below the jet level, but similar errors in the upper 
troposphere. In this study, ENSb shows relatively 

larger errors in the whole troposphere especially 
in winds, due to the additional ensemble spread 
created by the perturbations to the lateral 

boundaries. For temperature, NMC and ENSb 
statistics indicate a very similar magnitude of 
errors except above 150 hPa. Two maxima of 

temperature background error are located around 
the top of the boundary layer (7 sigma – 850 hPa) 
and above the jet level (20 sigma : around 200 

hPa).  
The major reason of smaller variance in ENSo 

is that every members use same boundary 

condition, AVN analysis in this study, to generate 
ensemble forecasts except for initial boundary 
values and tendency. 

 
 
 

 
 
 

 
 
 

 
 

Fig. 1 Vertical profile of standard deviation of u 

wind (left) and temperature (right) background error.  

 
Figure 2 indicates the derived correlations of 

unbalanced surface pressure in latitudinal index 
retrieved from NMC and ensemble statistics 
(ENSb). ENSb shows that the correlation of the 

unbalanced component correlated with stream 
function are increased in middle latitude. In other 
words, the regression analysis using ensemble 

data is less able to predict the surface pressure 
errors, than the regression using NMC-method 
data. This situation is very similar in velocity 

potential and temperature. 
We performed single temperature observation 

tests with a temperature at a level of 850 hPa (11 

sigma level) to see the detailed response from the 
new background error statistics and new 
background error model option (CV=5) in WRF-

3DVAR with the recursive filter length scale, 
EOF, and balance coefficient. In this figure, 
NMC, ENSo and ENSb experiments use the new  

 
 

 
 
 

 
 
 

 
 
 

Fig. 2 The correlation of the "unbalanced" and total 

components of surface pressure according to the 

NMC and ENSb experiments. 

 

background error statistics and CV=5 described 
in Section 2. Default CV3 has strong vertical 

autocorrelation than CV5 below sigma level 5 
(940 hPa). ENSo shows smaller autocorrelation 
than NMC and CV3 which is corresponded by 

smaller scale length. ENSb shows similar 
response range to NMC, but vertical correlation 
was decreased. Actually we expected that ENSb's 

scale length to represent horizontal correlation 
will be smaller than NMC such as Fisher (1999). 
However, we found a similar or somewhat larger 

scale length than that using the NMC-method due 
to the use of 12 h forecasted ensembles. The true 
state of 12 h forecasted ensemble seems to be 

similar to 24-12 h forecast differences in NMC in 
this study.  
 

4. Forecast Impacts  

We generated 12 h forecast errors (against sonde 
observations) using WRF forecast and different 

option in WRF 3DVAR (CV=3 and CV5). The 
CV2 and CV3 error statistics are base on global 
(MM5 and AVN) forecasts, and hence require 

interpolation to the regional domain. Fig. 4 shows 
the performance from local and interpolated B 
(upper panel) and different B statistics (lower 

panel). First we found that the interpolated 
statistics included in WRF 3DVAR does not give 
better forecasted errors regardless of CV=2 

(MM5) CV=3 (from AVN). Local background 
error statistics (CV=5) from WRF forecasts gives 
better forecast errors in both NMC and ENSb. 

However ENSo shows the increased forecast 
errors, especially in 12 hours cycling. In this 
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study, ENSb gives the very similar errors to 
NMC.  

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Fig. 3 Single observation test: Temperature 

response by a temperature around 850 hPa. 

 

4. Summary 

This study shows the possibilities of using 
ensemble forecasts to estimate background 

statistics of a limited area model. At this moment, 
ENSb shows similar skill to NMC. However, in 
short-range forecast ensembles (ex. 6hr), the 

impact of ensembles will be increased when we 
compare NMC using 12-24 (or 36-12) hour 
forecasts. Furthermore, the perturbation of lateral 

boundary conditions is effective in generating 
increased spread to depict forecast errors in a 
limited area model. However, suitable ensemble 

size and generation method of ensembles require 
further research.  
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Fig. 4 12 hour forecast errors against sounding 

temperature. Upper panel shows the comparison 

between interpolated statistics (CV3 and CV2) from 

other models and WRF model statistics (CV5-

NMC). Lower panel shows the forecast errors from 

NMC and ENS statistics. 
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