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1 Introduction

The goal of this work is to determine how well
gravity waves are represented in MM5. In partic-
ular, how much are they damped as they propa-
gate and how should MM5 runs be set up to avoid
unrealistic wave loss due to model damping?

To answer these questions, the two-dimensional
gravity-wave problem that leads to the four-beam
wave pattern, known as St. Andrew’s Cross, is
used. This pattern is produced when a stably
stratified fluid at rest with constant Brunt Väisällä
frequency is disturbed by a constant frequency os-
cillator. Gravity waves form and move away from
the disturbance along four directions, forming an
X shape, commonly called St. Andrew’s Cross.
This choice of problem is accompanied by a the-
ory, is supported by physical experiments, and al-
lows the MM5 wave propagation by the model’s
dynamic core to be distinguished from other model
functions.

It is noted that the damping in the MM5 is
strictly numerical, as real viscosity is not simu-
lated by the dynamic core of the model. To ex-
plore the sensitivity of the MM5’s numerical dissi-
pation to changes in grid and wave parameters, a
numerical analysis is done. The analysis uses the
gravity-wave solution from the theory to evaluate
loss of amplitude of a gravity wave subject to the
discretization and time-stepping used in MM5.

The analysis is validated by numerical experi-
ment for eight cases. For the MM5 simulation of
St. Andrew’s cross, moisture, Coriolis influences,
and other effects that are important in the real at-
mosphere are eliminated, making model conditions
close to those of theoretical solutions and numer-
ical analysis. The numerical experiment results
are also compared to the solution of Tabaei and
Akylas (2003), which provides a gage for MM5’s
numerical damping in terms of theoretical viscous
damping.

2 Numerical Analysis

For purposes of analyzing the numerical method
of the MM5, the two-dimensional momentum and
pressure equations are taken for a compressible,
polytropic gas and linearized about a background
state with no flow and constant Brunt Väisällä

frequency and temperature. A damping term is
added to the horizontal momentum equation to
reflect artificial damping used in the MM5 (ref-
erence NCAR tech note and code). The relevant
equations are
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where u and w are the horizontal and vertical
velocities, respectively, and p and ρ are the de-
viations from the background state pressure and
density, respectively. The independent variables,
x, z, and t are horizontal position, vertical po-
sition, and time, respectively. The subscript 0
refers to the background state, c is sound speed,
and D = −∆x3∂4u/∂x4 is the artificial dissipation
term. With the addition of the continuity equa-
tion, the hydrostatic relation, and the perfect gas
law, these equations describe the fluid of interest.

The approximate MM5 equations, (1) - (3), are
discretized according to methods used in MM5.
For example, in (1) a forward difference in time is
used to make the replacement,

∂u

∂t
→ (u(n+1)

q,r − u(n)
q,r )/∆t, (4)

where u is horizontal velocity in the discrete sys-
tem, and q, r and n refer to the position and time,
respectively. The discrete counterpart to (1) - (3)
is written for a gravity wave, for example the dis-
crete horizontal velocity is,

u(n)
q,r → Un exp i(kxxq + kzzr − ωt(n)). (5)

The discretized form of (1) - (3) with variables
written in terms of their gravity-wave solutions
are advanced in time following the MM5 scheme.
That is, the horizontal momentum equation is ex-
plicitly advanced in time, providing the the up-
dated value Un+1. Then the vertical momentum
and pressure equations are solved simultaneously
for the unknowns, W n+1 and P n+1, representing
vertical velocity and pressure, respectively, at the
next time step. This results in the ratios Un+1/Un
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and W n+1/W n, which are used to compute the
change in wave amplitude over one time step.

The terms treated as fast-changing, or acous-
tic, in the MM5 appear on the left hand side of (1) -
(3), and are updated on small time steps, while the
slowly-changing terms which appear on the right
hand side, are updated on large time steps. In the
analysis a large time step equal to four small time
steps is taken as a typical value. Once the gravity
wave completes its combination of small and large
time steps, the updated ratios for U and W are
combined to get the ratio for the resultant speed.
This ratio, called Aa, represents the impact of nu-
merical damping on the local fluid speed associated
with a gravity wave.

Values of Aa are shown in Figure 1 for a range
of grid and wave parameters. The values are less
than 1 indicating decreasing, rather than grow-
ing magnitudes for fluid speed. Values of Aa in-
crease as grid cells per wave, or wave resolution,
increases in either the horizontal or the vertical
directions. However, the surface of Aa values is
nearly two-dimensional, indicating greater sensi-
tivity to changes in horizontal parameters than
vertical ones.
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Figure 1. Beam amplitude predicted by

analysis for a range of horizontal and ver-

tical parameters.

3 Numerical Experiment

The MM5 is implemented for an idealized atmo-
sphere for eight sets of grid and wave parameters
specified in Tables 1 and 2. In all cases waves
are represented by at least four grid cells, both
horizontally and vertically. Simulations are in a
single domain without moisture, Coriolis effects,
a planetary boundary layer, or tropopause. The
terrain is uniform and the background state of the
atmosphere is given by an ideal gas in hydrostatic

balance with no flow and a temperature profile of
the standard atmosphere (Holton 1992), resulting
in a nearly uniform Brunt Väisälä frequency of
0.012s−1.

Wave kx (m−1) kz (m−1) ω (s−1)
Short 0.00048 ±0.0033 0.00175
Long 0.00024 ±0.0033 0.000873

Table 1. Wave parameters

Case ∆x (m) ∆z (m) Wave
1 3000 434 Short
2 3000 217 Short
3 2500 434 Short
4 2700 217 Short
5 3000 434 Long
6 3000 217 Long
7 2500 434 Long
8 2700 217 Long

Table 2 MM5 grid spacing and waves

The background state is maintained at all
boundaries except at the left hand boundary where
a perturbation satisfying the gravity-wave solution
is specified. The perturbation is only applied over
a limited vertical segment approximately equal to
one vertical wavelength. In order to simulate the
two-dimensional problem in a three-dimensional
atmosphere, the disturbance is applied uniformly
across the extraneous dimension (the N-S or y di-
mension in MM5 notation), while the other three
lateral boundaries retain their no-flow conditions.

The resulting flow contains an upward-
traveling beam and a downward-traveling beam,
forming the right half of the X shape in St. An-
drew’s Cross. An example of a beam developing
is shown in Figure 2. Beam-center velocities in
upper beams are measured from MM5 data and
combined with the known background density to
obtain beam-center amplitudes used in dissipation
evaluations.
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Figure 2. Example of MM5 gravity-wave

response.

4 Theory

The nonlinear, two-dimensional, viscous Boussi-
nesq beam problem was solved by Tabaei and Aky-
las (2003) for a stably stratified fluid with constant
Brunt Väisällä frequency. The solution prescribes
the loss in wave amplitude with distance from the
disturbance, along the center of the beam. That
amplitude result is interpretted here for a com-
pressible fluid, in which the background density
factor,

√
ρ0, constitutes the leading correction to

Boussinesq results (Lighthill 1978). This gives the
beam-center amplitude,

V
√

ρ0 ∝ 1

|ξ|2/3
, (6)

where V is the fluid speed and ξ is a beam-
following coordinate. This amplitude prediction is
used to gage whether MM5 beam amplitudes are
diminished by MM5 damping more or less than
they would be by molecular viscosity.

The analytic solutions also provide a disper-
sion relation between the wave frequency and wave
numbers. A calculation using this relation, pro-
vides the group velocity, which pertains to the
movement of wave energy.

5 Results

In order to show that numerical dissipation analy-
sis describes MM5 performance, the two are com-
pared. First, the results of the numerical experi-
ment are quantified in terms of amplification fac-
tor. The experimental amplification factor is based
on fluid speeds observed along a beam, V (ξ). Val-
ues of V (ξ) at a fixed time are interpretted as
equivalent local speeds at different times. For
example, losses over the period ∆t, when waves

travel from ξ0 to ξ1, are given by the amplification
factor

(Ae)
N

=
V (ξ1)

√

ρ0(ξ1)/ρ0(ξ0)

V (ξ0)
, (7)

where N = (ξ1−ξ0)/(Cg∆t) is the number of large
time steps and Cg is the group velocity from the-
ory. In this formulation the speed at ξ1 is trans-
formed to the equivalent speed at ξ0 using the re-
sult that V

√
ρ0 is conserved along a compressible,

inviscid beam. An average value for Ae using all
available points along the beam is used to repre-
sent each of the eight numerical cases.

Numerical dissipation is typically quantified in
terms of the order r in A = 1−Cf r, where C is a
constant, and f depends on grid and wave param-
eters (Strikwerda 1989). In the current problem f
is not readily determined and therefore the quan-
tity ln (1 − A), which varies like r ln f is used for
both the experiment and analysis results. For the
experiment a provisional dissipation is ln (1 − Ae).
This is adjusted by the average difference,

〈log (1 − Ae) − log (1 − Aa)〉 (8)

over all eight cases, to eliminate any constant dif-
ference and allow a direct comparison.

The experimental dissipation is compared to
the analysis dissipation for the eight simulated
beams in Figure 3, where labels indicate case num-
bers from Table 2. The diagonal line indicates
agreement between analysis and experiment, with
the amount of dissipation increasing toward the
top right of the diagonal. Markers are close to
the line, indicating the analysis is an approximate
predictor of numerical dissipation. This agreement
validates the analysis as a predictor of dissipation
of gravity waves by the MM5 dynamic core.
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Figure 3. Comparison of dissipation val-

ues predicted by analysis and observed in

experiment for eight numerical experiment

cases.

For comparison to viscous theory, MM5 beam
amplitudes as a function of the beam-following co-
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ordinate ξ are fit to the function,

V (ξ)
√

ρ0(ξ) = V (ξ0)
√

ρ0(ξ0)

(

ξ

ξ0

)

−F

, (9)

to find the exponent F . The value of F is com-
pared to the the value 2/3 from (6) to indicate the
MM5 level of damping relative to theoretical, vis-
cous damping. An example of amplitude along a
beam is shown in Figure 4 for case 3 (from Table
2), with markers to indicate MM5 values, a solid
curve to show the best-fit function for those val-
ues, and a dashed line to show theory. In this ex-
ample, MM5 amplitude decreased faster than the
theoretical prediction for a beam in a viscous fluid.
The oscillations in the MM5 values are largely due
to the beam center following a staircase pattern
through the MM5 grid.

Figure 4 Example of beam amplitude

from MM5, best fit curve, and theory.

A summary of F values for all eight cases is
shown in Figure 5. This shows that for cases 1 -
4, MM5 damping is greater than theoretical vis-
cous damping, while for the remainder it is less.
Variations in damping are shown with horizontal
parameters, and not vertical parameters, because
the analysis shows the dominance of horizontal pa-
rameters in numerical damping levels.
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Figure 5. Beam amplitude loss in terms of

F for the eight numerical experiment cases.

6 Conclusions

MM5 gravity wave beams are compared to numer-
ical analysis and theory in terms of damping of
gravity waves. Both numerical analysis and MM5
results show refining the resolution of the wave in
either the horizontal or vertical, decreases numer-
ical dissipation. The sensitivity of the damping to
the refinement is greater in the horizontal than the
vertical, reflecting the influence of the horizontally
based artificial dissipation.

Due to the relative sensitivity to horizontal
spacing, the horizontal spacing alone can be used
to approximately predict numerical dissipation.
The amount of numerical dissipation for a wave
represented by seven horizontal grid cells is ap-
proximately equivalent to the dissipation predicted
by theory accounting for molecular viscosity. Nu-
merical dissipation is greater or less than this
amount if the the wave is resolved by fewer or more
horizontal cells, respectively.

These results could be used to better under-
stand MM5 results and as a consideration in se-
lecting grids. This approach establishes a way to
perform idealized numerical experiments that can
be applied to other models for model investigation
or to compare different models on the basis of their
core calculations as opposed to their parameteri-
zations or boundary conditions.

7 Acknowledgments

This work was funded by the Air Force Office of
Scientific Research.

References

Holton, J. R. (1992). An Introduction to Dy-

namic Meteorology. New York: Academic
Press, 486 – 487.

Lighthill, M. J. (1978). Waves in Fluids. Cam-
bridge University Press, 284 – 298.

Strikwerda, J. C. (1989). Finite Difference

Schemes and Partial Differential Equations.
Pacific Grove: Wadsworth and Brooks/Cole,
386 pp.

Tabaei, A. and T. R. Akylas (2003). Nonlin-
ear internal gravity wave beams. J. Fluid

Mech. 482, 141 – 161.

WRF/MM5 Users' Workshop - June 2005




