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1 INTRODUCTION 
The work reported here was part of a broader effort 

directed at increasing the computational efficiency of 
the WRF model and related ancillary programs to 
improve execution times for the Air Force Weather 
Agency’s (AFWA) planned operational implementation 
of the WRF model. 

We concentrated on two main components of the 
WRF modeling system: the standard initialization 
package (WRFSI), and the forecast model (WRF).  The 
results of the WRFSI are briefly summarized in this 
abstract, while those for the WRF model are presented 
in some detail. For each component, the most recent 
version⎯as implemented at AFWA⎯was ported to a 
similar computer system located at a Department of 
Defense High Performance Computing (HPC) Major 
Shared Resource Center (MSRC) located at the Naval 
Oceanographic Office (NAVO), Stennis Space Center, 
MS. The ported code was subjected to a CPU time 
profiling analysis (Sections 2 and 3). The results of 
these analyses served to identify candidate modules for 
optimization. The results of the optimizations are 
described in Section 4.  

2 WRF PROFILING 
Version 2.0.3.1 (as released on 6 Dec 2004) was 

used, with a modified version of the Registry.EM file.  
Aside from minor stylistic changes, this version of the 
WRF model is identical to the version used on the HPC 
Distributed Center development platform at AFWA. The 
model was compiled on the "marcellus" platform at the 
NAVO MSRC, an IBM pSeries 690 148 node SP 
cluster, with each node containing eight 1.3 GHz 
Power4 processors. 

The model was configured for a nested grid 
configuration with a 301 x 238 outer grid with 15-km 
grid spacing, and an inner 268 x 244 grid with 5-km grid 
spacing, and 42 levels in the vertical.  The outer grid 
was advanced with a 60 sec time step, the inner grid 
with a 20 sec time step, using feedback from the inner 
to the outer grid, and no smoothing on the outer grid.  
The multiprocessing run used 64 processors, with one 
tile per processor (8 nodes with 8 processors each).  
The LoadLeveler batch system scripts specified 
exclusive use of each node for the WRF model run, and 
the use of shared memory for inter-processor 

communication on each node.  History output files were 
written once an hour on the inner nest, and once every 
three hours on the outer grid, using the GRIB1 format 
option.  All I/O was performed on the 9774 GB 
workspace file system (/scr) using the GPFS (General 
Parallel File System). 

The Eulerian mass core (EM) was used with a 
third-order Runge-Kutta time stepping scheme, with 
diff_opt=1 (2nd order diffusion on coordinate surfaces), 
with diffusion coefficients computed from horizontal 
Smagorinsky first order closure (km_opt=4).  Vertical 
velocity damping was enabled (w_damping=1).  
Horizontal advection uses 5th order differencing, 
vertical advection 3rd order. Specified boundary 
conditions were used on the outer grid, relaxation 
boundary conditions on the inner grid. The physics 
options for the baseline WRF model configuration are 
given in Table 1. 

WRF initial and boundary condition files for a 48-
hour forecast, initiated from a WRF 3dvar analysis valid 
at 06 UTC 11 Nov 2004, were used for all profiling runs 
described here. Wind fields and cloud condensate 
mixing ratios are shown in Figure 1 for level .2580 (near 
the jet stream level, with pressures ranging from 290 to 
near 180 hPa for domain 1).  This case is characterized 
by upper-level zonal flow with embedded short-wave 
features.  Cloudiness is present at this and other levels, 
in both domains, associated with large-scale and 
convective precipitation over relatively small portions of 
each domain. 

To verify proper compilation and execution of the 
WRF on the marcellus computer, a one-hour forecast 
was run and compared with the corresponding run on 
the AFWA HPC platform.  The root mean square (rms) 
differences and normalized differences (normalized, 
that is, by the rms values of the full fields) were 
computed over the inner domain between the two 
forecasts (not shown). The normalized values agree to 
better than 10-2 for the horizontal winds and water vapor 
mixing ratio, and better than 10-4 for potential 
temperature and pressure. Because of the strong 
nonlinearities inherent in moist processes, and small 
values of the full field variables, normalized differences 
for liquid and solid moisture mixing ratios reach values 
as large as 0.4 at isolated levels, although they are 
considerably smaller at most levels. Both of these runs 
used a compilation at optimization level 2 (-O2 flag was 
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used during compilation and linking of Fortran codes).  
A test run with optimization level 3 (-O3 flag) resulted in 
differences of very similar magnitudes. 

Table 1. Baseline WRF Model Configuration 

Physics setting Description 
mp_physics = 4 WRF single moment 5-

class (WSM5) 
mp_zero_out = 2 enforce non-negative water 

vapor specific humidity, 
and zero out other moist 
arrays below a threshold 
value 

ra_lw_physics = 1 RRTM scheme 
ra_sw_physics = 1 

• icloud = 1 
 

• radt = 30 

Dudhia scheme 
with cloud effect to the 
optical depth in radiation 
minutes between radiation 
physics calls 

sf_sfclay_physics = 1 Monin-Obukhov scheme 
sf_surface_physics = 2 
 

• isfflx = 1 
• ifsnow = 0 

Noah land-surface model 
(with 4 soil layers) 
with fluxes from the surface 
without snow-cover effect 

bl_pbl_physics = 1 
• bldt = 0 

YSU scheme 
BL physics called every 
time step 

cu_physics = 3 Grell-Devenyi ensemble 
scheme (using default 
values of parameters) 

cudt = 5 minutes between cumulus 
physics calls 

 
Figure 1. Winds (shown in knots, colorized 
according to circular color scale in upper right 
corner) and total cloud condensate mixing ratio 
(shown in g/kg) for model level 0.2580, domain 1, at 
3 hours into the forecast. 

3 TIMING RESULTS 
Timing runs were run out to 6 hours on marcellus, 

using both a level 2 and level 3 optimization (-O2 and 

-O3).  The profiling utility gprof was used in conjunction 
with the required -pg compiler flag.  For comparison, the 
tprof utility was used on an executable compiled without 
the -pg compiler flag.  Both utilities rely on sampling to 
determine the most CPU intensive parts of the code.  
The gprof profiles provide a calling tree analysis of CPU 
time, as well as a flat profile listing the individual 
routines in order of CPU time spent in each.  Separate 
gprof profiles were generated for each of the 64 
processors for each run. 

An overview of the WRF call tree for processors 0 
and 63 is shown in Table 2, which shows that most of 
the CPU time is spent in routines called by integrate, 
with smaller amounts (roughly 10% total) by nesting 
feedback and forcing, and, for processor 0, I/O. 

Table 2. WRF call tree profile.  “Self” and “Desc” 
are the CPU time (sec) spent in the routine, and the 
routines called by it, respectively. 

Self Descendents Name 
p0 p63 p0 p63  

0 0.02 1052.8 977.3 
.__module_integrate_
MOD_integrate 

0.41 0.19 929.85 877.53 .solve_interface 
0.04 0.06 86.67 87.85 .med_nest_force 

0 18.98  .med_before_solve_io
0 0 9.41 8.56 .med_nest_feedback 
0 4.7  .med_last_solve_io 
 
Almost the entire CPU time for integrate is spent by 

routines called by solve_em, the main time stepping 
driver. Within solve_em, the most expensive parts of 
the computation are (in order): dry tendencies 
(rk_tendencies), the Cumulus parameterization, the 
microphysics parameterization, various parts of the time 
stepping computations, the PBL parameterization, the 
radiation package, and the surface flux 
parameterization.  More detailed breakdowns (not 
shown) reveal a fairly even distribution among many 
routines for some packages (as rk_tendency), and fairly 
concentrated CPU times for others (particularly the 
microphysics and surface layer physics). A breakdown 
at the subroutine level (not shown) reveals the rankings 
(in terms of CPU time) and the percentage spent.  This 
included results from gprof (for processor 0, and for 
CPU times summed over all processors), and from 
tprof. 

Using the ranking of the CPU-intensive portions of 
the code as a guide, we examined the code for 
optimization opportunities. The results are summarized 
as follows, in order of priority: 

• .__module_bl_ysu_MOD_ysu2d 
• .__module_cu_gd_MOD_cup_enss 
• .sintb 
• .__module_small_step_em 
• .__module_big_step_utilities_em 
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This ordering was based on a combination of the 
percentage of CPU consumed and perceived ease with 
which speedups can be obtained.   

Although the single most CPU-intensive non-
system routine is wsm52d (part of the WSM5 
microphysics package), it was not selected for 
optimization because it had been previously optimized 
(by John Michalakes of NCAR): exponentiations (**) 
were replaced by (mathematically equivalent) calls to 
intrinsics (exp, log, and sqrt), and calls to low-level 
functions and routines were replaced by explicitly 
inlined code.  A test run with these optimizations 
disabled resulted in approximately 10% more CPU time 
spent in this routine, and an overall increase of 2-3% in 
CPU time for our 6-hour forecast case. 

The top candidate identified (routine ysu2d, which 
is part of the PBL package) contains expensive 
operations such as “**”, which can be optimized using 
the same strategy as used in wsm52d.  Routine 
cup_enss of the cumulus parameterization scheme was 
selected because a preliminary analysis identified some 
possible loop restructuring.  The collection of routines 
that are called within module_small_step_em and 
module_big_step_utilities_em accounts for a sizable 
share of the CPU time, so it is worth considering for 
optimization.  For the most part, the routines consist of 
fairly simple operations, so speedups can be expected 
only if loop restructuring can improve memory 
localization.  Results from timing runs with calls to the 
IBM Hardware Performance Monitor (HPM) library 
indicated no clear candidates (modules with high wall 
clock times and low utilization rates). 

4 WRF OPTIMIZATION RESULTS 
Boundary Layer 
The routine ysu2d accounts for most of the time 

spent in the YSU boundary layer package.  Aside from 
some minor loop reorganizations (switching the nesting 
of i,k loops so that arrays are accessed in storage 
order), the optimizations in this routine concentrated on 
expensive floating point operations, primarily 
exponentiations.  In the original code, exponentiations 
were all implemented as “**”, using floating point 
constants or variables.  In the optimized code, all 
exponentiations to floating point exponents were 
replaced by mathematically equivalent calls to the “exp” 
and “log” intrinsics if the argument to the log functions 
was positive definite.  Expressions involving negative 
fractional exponents were replaced by divisions and use 
of the “sqrt” intrinsic.  Integer constants were used 
instead of floating point constants where appropriate.  
In addition, we examined the effect of replacing “** n” by 
n multiplication operations, for n=2, 3, and 4.  Sensitivity 
tests indicated that this optimization was beneficial for 
n=2, but not for higher powers. Correctness testing 
used rms difference statistics of 1-hour domain 2 
forecast values.  The rms differences were found to be 
of the same order as those from runs of the same code 
on different platforms.  

The effects of optimization of the ysu2d routine 
were analyzed by repeating the 6-hour gprof profiling 

runs discussed in section 3, both with the original and 
optimized version of the ysu2d routine.  CPU times 
were summed over all 64 processors for this analysis.  
The CPU time for routine ysu2d was reduced from 
1639.71 sec to 1524.67 sec, representing a 6.9% 
speedup.  The total CPU time for the 6-hour forecast 
was reduced by 2.0% (from 76741 sec to 75264 sec). 

In addition, a 1-hour forecast was performed with a 
version of the code instrumented with calls to the HPM 
library.  The code was compiled without the –pg 
profiling option for this analysis.  The HPM statistics for 
the PBL driver section of the code is shown in Figure 2, 
which shows the wall clock time for each of the 64 
processors over the 1-hour forecast.  Although there is 
considerable variation from one processor to the next, 
the optimization results in a consistent improvement in 
terms of wall-clock and CPU time (by about the same 
percentage seen in the 6-hour profiling run), and 
numbers of instructions (not shown).  Because the 
optimization resulted in fewer floating point operations, 
the flip rate and computation intensity (not shown) are 
actually slightly lower for the optimized version. 

 
Cumulus Parameterization 
The cup_enss routine identified in Section 3 is the 

most time-consuming routine of several routines in the 
cumulus parameterization module module_cu_gd.  
Examination of this and related routines in this module 
indicated numerous loops over i,k which were either not 
nested in memory order (the outermost index, i, was the 
fastest-varying array index), or which contained if-
statements in the innermost loop.  Because the 
algorithm is intrinsically column-oriented (i.e., there are 
various factors that vary by horizontal position 
represented by the innermost array-index, i), a simple 
reordering of loop nesting as was done in the boundary 
layer routine ysu2d was not possible here.  Instead, we 
rewrote the code by reordering all local arrays such that 
the vertical index, k, is the fastest-varying array-index.  
In addition, all nested i,k loops were reordered such that 
the horizontal index i was the outermost loop.  These 
changes were limited to the arrays local to the cumulus 
module, and the interface to the cumulus_driver is 
unaffected by these changes.  Because this approach 
may not be optimal for some architectures, particularly 
vector processors, we also kept the original code, and 
defined a CPP precompiler macro that allows switching 
between the two versions. Correctness testing, again 
using rms differences between original and modified 
code runs out to 1 hour, showed identical results from 
the original and optimized versions of the code. 

The effect of the optimization on 6-hour forecast 
CPU times from a profiling run were examined by 
summing the CPU times from all 64 processors for all 
routines of the cumulus parameterization package 
(module_cu_gd).  The results showed a showed a 24% 
speedup (from 6455.71 sec to  5211.82 sec).  The CPU 
time of the entire WRF model was decreased by 3.4% 
(from 76735.97 sec to 74226.13 sec). 

The HPM statistics for the cumulus driver section 
for a 1-hour forecast are shown in Figure 3.  As is to be 
expected, there is a larger load imbalance between 

WRF/MM5 Users' Workshop - June 2005



processors for the cumulus convection scheme than for 
the boundary layer.  However, a consistent reduction in 
the number of operations and resulting CPU and wall-
clock times (not shown) was observed at all processors.  
There are fewer instructions overall in the optimized 
code because of the improved data locality, but more 
floating point operations per cycle (resulting in higher 
flip rates, not shown).  The percentage of floating point 
operations using the FMA unit is also increased (not 
shown). 

An additional set of HPM instrumented runs were 
performed with the original and optimized cumulus 
parameterization package, using a different set of HPM 
statistics oriented at memory access performance of the 
code (event set 56, which includes counts of TLB 
misses, loads, stores, and L1 misses in addition to 
counts of cycles and instructions).  Comparison of the 
output from the two sets of HPM runs for counts 
contained in both event sets showed that some 
statistics are quite reliable (consistent results were 
obtained from both runs), most notably Wall-clock time, 
User time, Processor Cycles, and Instructions 
completed.  Others, particularly derived quantities such 
as utilization rate and MIPS, showed less run-to-run 
consistency.  Analysis of the output for the cumulus 
driver section showed improvements in a number of 
memory related metrics, particularly in the number of L1 
D cache load and store references, and the total 
number of load and store operations (not shown). 

5 SUMMARY 
We examined the WRFSI and the WRF model in 

order to identify code changes that could result in 
greater computational efficiency. Within WRFSI, 
optimization of the candidate modules in the hinterp and 
vinterp programs resulted in substantial speedups of 
those routines (20% for the hinterp program, and a 12-
fold increase for the vinterp program).  The resulting 
overall speedups for the program CPU time are on the 
order of 5-10%.  For the hinterp program, a similar 
speedup is also obtained for the wall-clock time, 
whereas the vinterp program wall-clock time speedups 
were smaller.  Results from a Hardware Performance 
Monitor run suggests that further wall-clock time 
speedups of the vinterp program would require 
reexamination of the generation of the netCDF files. 

For the WRF model, the largest speedup was 
obtained by a reordering of the arrays inside the Grell-
Devenyi cumulus parameterization package: the 
optimized cumulus parameterization (module_cu_gd) 
resulted in a 24% speedup, and a 3.4% overall 
decrease in the CPU time of the entire run. Optimization 
of the boundary layer routine ysu2d resulted in smaller 
speedups: a 7% reduction of the CPU for the boundary 
layer package, and a 2% reduction of the total CPU 
time. 
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Figure 2. Wall clock time (sec) per processor for the 
PBL driver section for a 1-hour forecast.  Results 
are shown for the original code (black octagons), 
code with optimized PBL package (red triangles), 
and optimized cumulus parameterization package 
(green crosses) 

 
Figure 3. As in Figure 2, but for the cumulus driver 
section. 
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