
WRF Module Optimization Study

Thomas Nehrkorn* and George D. Modica

Atmospheric and Environmental Research, Inc.
Lexington, Massachusetts

* Corresponding author address: Thomas Nehrkorn,

AER, Inc., 131 Hartwell Ave., Lexington, MA, 024231-
3126; email: trn@aer.com

1 INTRODUCTION
The work reported here was part of a broader effort

directed at increasing the computational efficiency of
the WRF model and related ancillary programs to
improve execution times for the Air Force Weather
Agency’s (AFWA) planned operational implementation
of the WRF model.

We concentrated on two main components of the
WRF modeling system: the standard initialization
package (WRFSI), and the forecast model (WRF). The
results of the WRFSI are briefly summarized in this
abstract, while those for the WRF model are presented
in some detail. For each component, the most recent
version⎯as implemented at AFWA⎯was ported to a
similar computer system located at a Department of
Defense High Performance Computing (HPC) Major
Shared Resource Center (MSRC) located at the Naval
Oceanographic Office (NAVO), Stennis Space Center,
MS. The ported code was subjected to a CPU time
profiling analysis (Sections 2 and 3). The results of
these analyses served to identify candidate modules for
optimization. The results of the optimizations are
described in Section 4.

2 WRF PROFILING
Version 2.0.3.1 (as released on 6 Dec 2004) was

used, with a modified version of the Registry.EM file.
Aside from minor stylistic changes, this version of the
WRF model is identical to the version used on the HPC
Distributed Center development platform at AFWA. The
model was compiled on the "marcellus" platform at the
NAVO MSRC, an IBM pSeries 690 148 node SP
cluster, with each node containing eight 1.3 GHz
Power4 processors.

The model was configured for a nested grid
configuration with a 301 x 238 outer grid with 15-km
grid spacing, and an inner 268 x 244 grid with 5-km grid
spacing, and 42 levels in the vertical. The outer grid
was advanced with a 60 sec time step, the inner grid
with a 20 sec time step, using feedback from the inner
to the outer grid, and no smoothing on the outer grid.
The multiprocessing run used 64 processors, with one
tile per processor (8 nodes with 8 processors each).
The LoadLeveler batch system scripts specified
exclusive use of each node for the WRF model run, and
the use of shared memory for inter-processor

communication on each node. History output files were
written once an hour on the inner nest, and once every
three hours on the outer grid, using the GRIB1 format
option. All I/O was performed on the 9774 GB
workspace file system (/scr) using the GPFS (General
Parallel File System).

The Eulerian mass core (EM) was used with a
third-order Runge-Kutta time stepping scheme, with
diff_opt=1 (2nd order diffusion on coordinate surfaces),
with diffusion coefficients computed from horizontal
Smagorinsky first order closure (km_opt=4). Vertical
velocity damping was enabled (w_damping=1).
Horizontal advection uses 5th order differencing,
vertical advection 3rd order. Specified boundary
conditions were used on the outer grid, relaxation
boundary conditions on the inner grid. The physics
options for the baseline WRF model configuration are
given in Table 1.

WRF initial and boundary condition files for a 48-
hour forecast, initiated from a WRF 3dvar analysis valid
at 06 UTC 11 Nov 2004, were used for all profiling runs
described here. Wind fields and cloud condensate
mixing ratios are shown in Figure 1 for level .2580 (near
the jet stream level, with pressures ranging from 290 to
near 180 hPa for domain 1). This case is characterized
by upper-level zonal flow with embedded short-wave
features. Cloudiness is present at this and other levels,
in both domains, associated with large-scale and
convective precipitation over relatively small portions of
each domain.

To verify proper compilation and execution of the
WRF on the marcellus computer, a one-hour forecast
was run and compared with the corresponding run on
the AFWA HPC platform. The root mean square (rms)
differences and normalized differences (normalized,
that is, by the rms values of the full fields) were
computed over the inner domain between the two
forecasts (not shown). The normalized values agree to
better than 10-2 for the horizontal winds and water vapor
mixing ratio, and better than 10-4 for potential
temperature and pressure. Because of the strong
nonlinearities inherent in moist processes, and small
values of the full field variables, normalized differences
for liquid and solid moisture mixing ratios reach values
as large as 0.4 at isolated levels, although they are
considerably smaller at most levels. Both of these runs
used a compilation at optimization level 2 (-O2 flag was

3.45

WRF/MM5 Users' Workshop - June 2005

used during compilation and linking of Fortran codes).
A test run with optimization level 3 (-O3 flag) resulted in
differences of very similar magnitudes.

Table 1. Baseline WRF Model Configuration

Physics setting Description
mp_physics = 4 WRF single moment 5-

class (WSM5)
mp_zero_out = 2 enforce non-negative water

vapor specific humidity,
and zero out other moist
arrays below a threshold
value

ra_lw_physics = 1 RRTM scheme
ra_sw_physics = 1

• icloud = 1

• radt = 30

Dudhia scheme
with cloud effect to the
optical depth in radiation
minutes between radiation
physics calls

sf_sfclay_physics = 1 Monin-Obukhov scheme
sf_surface_physics = 2

• isfflx = 1
• ifsnow = 0

Noah land-surface model
(with 4 soil layers)
with fluxes from the surface
without snow-cover effect

bl_pbl_physics = 1
• bldt = 0

YSU scheme
BL physics called every
time step

cu_physics = 3 Grell-Devenyi ensemble
scheme (using default
values of parameters)

cudt = 5 minutes between cumulus
physics calls

Figure 1. Winds (shown in knots, colorized
according to circular color scale in upper right
corner) and total cloud condensate mixing ratio
(shown in g/kg) for model level 0.2580, domain 1, at
3 hours into the forecast.

3 TIMING RESULTS
Timing runs were run out to 6 hours on marcellus,

using both a level 2 and level 3 optimization (-O2 and

-O3). The profiling utility gprof was used in conjunction
with the required -pg compiler flag. For comparison, the
tprof utility was used on an executable compiled without
the -pg compiler flag. Both utilities rely on sampling to
determine the most CPU intensive parts of the code.
The gprof profiles provide a calling tree analysis of CPU
time, as well as a flat profile listing the individual
routines in order of CPU time spent in each. Separate
gprof profiles were generated for each of the 64
processors for each run.

An overview of the WRF call tree for processors 0
and 63 is shown in Table 2, which shows that most of
the CPU time is spent in routines called by integrate,
with smaller amounts (roughly 10% total) by nesting
feedback and forcing, and, for processor 0, I/O.

Table 2. WRF call tree profile. “Self” and “Desc”
are the CPU time (sec) spent in the routine, and the
routines called by it, respectively.

Self Descendents Name
p0 p63 p0 p63

0 0.02 1052.8 977.3
.__module_integrate_
MOD_integrate

0.41 0.19 929.85 877.53 .solve_interface
0.04 0.06 86.67 87.85 .med_nest_force

0 18.98 .med_before_solve_io
0 0 9.41 8.56 .med_nest_feedback
0 4.7 .med_last_solve_io

Almost the entire CPU time for integrate is spent by

routines called by solve_em, the main time stepping
driver. Within solve_em, the most expensive parts of
the computation are (in order): dry tendencies
(rk_tendencies), the Cumulus parameterization, the
microphysics parameterization, various parts of the time
stepping computations, the PBL parameterization, the
radiation package, and the surface flux
parameterization. More detailed breakdowns (not
shown) reveal a fairly even distribution among many
routines for some packages (as rk_tendency), and fairly
concentrated CPU times for others (particularly the
microphysics and surface layer physics). A breakdown
at the subroutine level (not shown) reveals the rankings
(in terms of CPU time) and the percentage spent. This
included results from gprof (for processor 0, and for
CPU times summed over all processors), and from
tprof.

Using the ranking of the CPU-intensive portions of
the code as a guide, we examined the code for
optimization opportunities. The results are summarized
as follows, in order of priority:

• .__module_bl_ysu_MOD_ysu2d
• .__module_cu_gd_MOD_cup_enss
• .sintb
• .__module_small_step_em
• .__module_big_step_utilities_em

WRF/MM5 Users' Workshop - June 2005

This ordering was based on a combination of the
percentage of CPU consumed and perceived ease with
which speedups can be obtained.

Although the single most CPU-intensive non-
system routine is wsm52d (part of the WSM5
microphysics package), it was not selected for
optimization because it had been previously optimized
(by John Michalakes of NCAR): exponentiations (**)
were replaced by (mathematically equivalent) calls to
intrinsics (exp, log, and sqrt), and calls to low-level
functions and routines were replaced by explicitly
inlined code. A test run with these optimizations
disabled resulted in approximately 10% more CPU time
spent in this routine, and an overall increase of 2-3% in
CPU time for our 6-hour forecast case.

The top candidate identified (routine ysu2d, which
is part of the PBL package) contains expensive
operations such as “**”, which can be optimized using
the same strategy as used in wsm52d. Routine
cup_enss of the cumulus parameterization scheme was
selected because a preliminary analysis identified some
possible loop restructuring. The collection of routines
that are called within module_small_step_em and
module_big_step_utilities_em accounts for a sizable
share of the CPU time, so it is worth considering for
optimization. For the most part, the routines consist of
fairly simple operations, so speedups can be expected
only if loop restructuring can improve memory
localization. Results from timing runs with calls to the
IBM Hardware Performance Monitor (HPM) library
indicated no clear candidates (modules with high wall
clock times and low utilization rates).

4 WRF OPTIMIZATION RESULTS
Boundary Layer
The routine ysu2d accounts for most of the time

spent in the YSU boundary layer package. Aside from
some minor loop reorganizations (switching the nesting
of i,k loops so that arrays are accessed in storage
order), the optimizations in this routine concentrated on
expensive floating point operations, primarily
exponentiations. In the original code, exponentiations
were all implemented as “**”, using floating point
constants or variables. In the optimized code, all
exponentiations to floating point exponents were
replaced by mathematically equivalent calls to the “exp”
and “log” intrinsics if the argument to the log functions
was positive definite. Expressions involving negative
fractional exponents were replaced by divisions and use
of the “sqrt” intrinsic. Integer constants were used
instead of floating point constants where appropriate.
In addition, we examined the effect of replacing “** n” by
n multiplication operations, for n=2, 3, and 4. Sensitivity
tests indicated that this optimization was beneficial for
n=2, but not for higher powers. Correctness testing
used rms difference statistics of 1-hour domain 2
forecast values. The rms differences were found to be
of the same order as those from runs of the same code
on different platforms.

The effects of optimization of the ysu2d routine
were analyzed by repeating the 6-hour gprof profiling

runs discussed in section 3, both with the original and
optimized version of the ysu2d routine. CPU times
were summed over all 64 processors for this analysis.
The CPU time for routine ysu2d was reduced from
1639.71 sec to 1524.67 sec, representing a 6.9%
speedup. The total CPU time for the 6-hour forecast
was reduced by 2.0% (from 76741 sec to 75264 sec).

In addition, a 1-hour forecast was performed with a
version of the code instrumented with calls to the HPM
library. The code was compiled without the –pg
profiling option for this analysis. The HPM statistics for
the PBL driver section of the code is shown in Figure 2,
which shows the wall clock time for each of the 64
processors over the 1-hour forecast. Although there is
considerable variation from one processor to the next,
the optimization results in a consistent improvement in
terms of wall-clock and CPU time (by about the same
percentage seen in the 6-hour profiling run), and
numbers of instructions (not shown). Because the
optimization resulted in fewer floating point operations,
the flip rate and computation intensity (not shown) are
actually slightly lower for the optimized version.

Cumulus Parameterization
The cup_enss routine identified in Section 3 is the

most time-consuming routine of several routines in the
cumulus parameterization module module_cu_gd.
Examination of this and related routines in this module
indicated numerous loops over i,k which were either not
nested in memory order (the outermost index, i, was the
fastest-varying array index), or which contained if-
statements in the innermost loop. Because the
algorithm is intrinsically column-oriented (i.e., there are
various factors that vary by horizontal position
represented by the innermost array-index, i), a simple
reordering of loop nesting as was done in the boundary
layer routine ysu2d was not possible here. Instead, we
rewrote the code by reordering all local arrays such that
the vertical index, k, is the fastest-varying array-index.
In addition, all nested i,k loops were reordered such that
the horizontal index i was the outermost loop. These
changes were limited to the arrays local to the cumulus
module, and the interface to the cumulus_driver is
unaffected by these changes. Because this approach
may not be optimal for some architectures, particularly
vector processors, we also kept the original code, and
defined a CPP precompiler macro that allows switching
between the two versions. Correctness testing, again
using rms differences between original and modified
code runs out to 1 hour, showed identical results from
the original and optimized versions of the code.

The effect of the optimization on 6-hour forecast
CPU times from a profiling run were examined by
summing the CPU times from all 64 processors for all
routines of the cumulus parameterization package
(module_cu_gd). The results showed a showed a 24%
speedup (from 6455.71 sec to 5211.82 sec). The CPU
time of the entire WRF model was decreased by 3.4%
(from 76735.97 sec to 74226.13 sec).

The HPM statistics for the cumulus driver section
for a 1-hour forecast are shown in Figure 3. As is to be
expected, there is a larger load imbalance between

WRF/MM5 Users' Workshop - June 2005

processors for the cumulus convection scheme than for
the boundary layer. However, a consistent reduction in
the number of operations and resulting CPU and wall-
clock times (not shown) was observed at all processors.
There are fewer instructions overall in the optimized
code because of the improved data locality, but more
floating point operations per cycle (resulting in higher
flip rates, not shown). The percentage of floating point
operations using the FMA unit is also increased (not
shown).

An additional set of HPM instrumented runs were
performed with the original and optimized cumulus
parameterization package, using a different set of HPM
statistics oriented at memory access performance of the
code (event set 56, which includes counts of TLB
misses, loads, stores, and L1 misses in addition to
counts of cycles and instructions). Comparison of the
output from the two sets of HPM runs for counts
contained in both event sets showed that some
statistics are quite reliable (consistent results were
obtained from both runs), most notably Wall-clock time,
User time, Processor Cycles, and Instructions
completed. Others, particularly derived quantities such
as utilization rate and MIPS, showed less run-to-run
consistency. Analysis of the output for the cumulus
driver section showed improvements in a number of
memory related metrics, particularly in the number of L1
D cache load and store references, and the total
number of load and store operations (not shown).

5 SUMMARY
We examined the WRFSI and the WRF model in

order to identify code changes that could result in
greater computational efficiency. Within WRFSI,
optimization of the candidate modules in the hinterp and
vinterp programs resulted in substantial speedups of
those routines (20% for the hinterp program, and a 12-
fold increase for the vinterp program). The resulting
overall speedups for the program CPU time are on the
order of 5-10%. For the hinterp program, a similar
speedup is also obtained for the wall-clock time,
whereas the vinterp program wall-clock time speedups
were smaller. Results from a Hardware Performance
Monitor run suggests that further wall-clock time
speedups of the vinterp program would require
reexamination of the generation of the netCDF files.

For the WRF model, the largest speedup was
obtained by a reordering of the arrays inside the Grell-
Devenyi cumulus parameterization package: the
optimized cumulus parameterization (module_cu_gd)
resulted in a 24% speedup, and a 3.4% overall
decrease in the CPU time of the entire run. Optimization
of the boundary layer routine ysu2d resulted in smaller
speedups: a 7% reduction of the CPU for the boundary
layer package, and a 2% reduction of the total CPU
time.

Acknowledgements: This work was supported by the Air
Force Weather Agency under contract FA8720-04-C-
0009. Computing time at the NAVO HPC facility was
provided by a grant from the DoD High Performance
Computing Modernization Office.

Figure 2. Wall clock time (sec) per processor for the
PBL driver section for a 1-hour forecast. Results
are shown for the original code (black octagons),
code with optimized PBL package (red triangles),
and optimized cumulus parameterization package
(green crosses)

Figure 3. As in Figure 2, but for the cumulus driver
section.

WRF/MM5 Users' Workshop - June 2005

	INTRODUCTION
	WRF PROFILING
	TIMING RESULTS
	WRF OPTIMIZATION RESULTS
	Boundary Layer
	Cumulus Parameterization

	SUMMARY

