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Ultimate Motivation: Ultimate Motivation: MesoMeso--γγ/Micro-/Micro-αα scale N/C scale N/Cnn
22 Prediction Prediction

  Army field commanders desire information on 
“refractivity parameters” (N/CN/Cnn

22 )  ) in relation to 
field-level optical (EM) turbulence effects 
which impact:

Communications, including w/ UAVs
Range and Detection (IR, Microwave)
Future Directed Energy Weapon Targeting
(e.g., Laser technologies)

  Information is desired on at least 1-2 km scale,
if not finer; also PBL focus

  Previous examination indicated mesoscale 
 models have some skill in predicting larger 
 scale (meso-β  ⇑) N and Cn

2 from standard 
 formulae developed to relate these quantities to
 mean atmospheric fields

Image Distortion in the Far IR (8-
12 mm FLIR) over a 2 km path for
Cn

2 = 10-12 m-2/3.

Courtesy of Dave Tofstad, ARL,
WSMR



 

Possible Modeling Approaches

  Some type of microscale model (LES, possibly driven by 
mesoscale model output).
Limited areal application unless actually nested within meso-model
(very expensive)

  Use mesoscale model output and a statistical downscaling 
technique
Downscaling parameters may need adjustment even over scales of 

interest (where does data for downscaling come from?)

   Run mesoscale model at micro-a scale resolution (400 m max)
 Relatively modest expense; not very well posed for MM5; better for 

WRF but are physics schemes realistic at such scales?

•   Ensemble Approach: less expensive than #1, more than #3 but 
has built-in advantage of using the uncertainty in our knowledge 
(as manifested in the model) and data to the forecast’s benefit



 

General Ensembling Approach: 36 members

Capture more of the possible uncertainty by:Capture more of the possible uncertainty by:
 Using a larger ensemble, with two different mesoscale modelsUsing a larger ensemble, with two different mesoscale models

 MM5, WRF

 Vary initial condition/data assimilation input to the modelsVary initial condition/data assimilation input to the models
 NAM/NNRP/NARR (etc), LAPS hot start +enhanced, 3DVAR,

Lagged avg. forecast technique (etc), nudging

 Vary treatment of physical processes in models Vary treatment of physical processes in models (20+; this talk)(20+; this talk)
 Large laundry list (see table, next slide)

Focus on 1 km horizontal grid over > (200 km)Focus on 1 km horizontal grid over > (200 km)22 area area
 Domain size forecast period dependent

Try to keep computation cost within reasonable boundsTry to keep computation cost within reasonable bounds
 For future ARL applications, primarily 0-6/24 hr timeframes

Examine value of probabilistic forecasts/Examine value of probabilistic forecasts/ensembling ensembling atat
these scalesthese scales



 

Substudy: How do MM5/WRF physics (sub)ensembles compare?

MM5 Member Cumulus PBL Microphysics Radiation Land Surface

Control None Eta Reisner 2 RRTM NOAH

Blackadar None Blackadar Reisner 2 RRTM 5 Layer

Gayno-Seaman None Gayno-Seaman Reisner 2 RRTM 5 Layer

Grell Grell + Shallow Eta Goddard RRTM NOAH

Fritsch-Chappell Fritsch-Chappell Eta Reisner 2 RRTM NOAH

Goddard None Eta Goddard RRTM NOAH

Reisner 1 None Eta Reisner 1 RRTM NOAH

Schultz None Eta Schultz RRTM NOAH

Cloud None Eta Reisner 2 Cloud NOAH

CCM2 None Eta Reisner 2 CCM2 NOAH

5 Layer Shallow only Eta Reisner 2 RRTM 5 Layer

5 Layer/ MRF None MRF Reisner 2 RRTM 5 Layer

Slab/GaynoSeaman None Gayno-Seaman Reisner 2 RRTM Slab

WRF Member Cumulus PBL Surface Layer Microphysics Longwave
Radiation

Shortwave
Radiation

Land
Surface

Control None MYJ Monin -Obukov
(M-O) -Janjic Ferrier RRTM Goddard NOAH

YSU/M-O None YSU M-O Ferrier RRTM Goddard NOAH

Grell Grell MYJ M-O -Janjic Ferrier RRTM Goddard NOAH

BMJ/YSU BMJ YSU M-O Ferrier RRTM Goddard NOAH

5 Class BMJ MYJ M-O -Janjic WSM 5-Class RRTM Goddard NOAH

3 Class None MYJ M-O -Janjic WSM 3-Class RRTM Goddard NOAH

6 Class Grell MYJ M-O -Janjic WSM 6-Class RRTM Goddard NOAH

RRTM/Dudhia None MYJ M-O- Janjic Ferrier RRTM Dudhia NOAH

GFDL None MYJ M-O -Janjic Ferrier GFDL GFDL NOAH

5 Layer None MYJ M-O -Janjic Ferrier RRTM Goddard 5 Layer

RUC None MYJ M-O- Janjic Ferrier RRTM Goddard RUC

Call Times None MYJ M-O -Janjic Ferrier RRTM Goddard NOAH

Lin/
Kain-Fritsch

Kain-
Fritsch MYJ M-O -Janjic Lin RRTM Goddard NOAH

10 MM5 members

10 WRF members



 

Case I: STORM-FESTCase I: STORM-FEST Dryline Dryline/Frontal Interaction  3/8-9/1992/Frontal Interaction  3/8-9/1992

Strong outbreak of severe weather in southern plains associated with
complex interactions between multiple systems--Pacific front (mainly
aloft), dryline, Arctic front, low level warm front----during period

Focus of 1 km runs 12 UTC 3/8 - 12 UTC 3/9

12 UTC 3/8/92

Dryline Dryline

Pacific
Front

Pacific
Front

after Neiman et al (1998)



 

Case I: STORM-FESTCase I: STORM-FEST Dryline Dryline/Frontal Merger  3/8-10/1992/Frontal Merger  3/8-10/1992

00 UTC 3/9/92

after Neiman et
al (1998)

12 UTC 3/9/92

Dryline Pacific Front Dryline

Dryline

Pacific Front

Pacific Front (aloft)

DrylineDryline



 

Case Specific MethodologyCase Specific Methodology

1 km ensemble domain focus area: eastern TX/OK

Nesting approach utilized to avoid issue of boundary conditions
ultimately dominating solution since most robust dataset available for
initialization is NCAR/NCEP Reanalysis (> 1o x 1o resolution)

“Conventional wisdom” for nesting=> domains of 81, 27, 9, 3, 1 km

=> expensive for 36 members!!

=> experiment w/only double nest---- w/ grids:
 15 km: 180 x 220 x 51 vertical levels    (~ 8:1 nest ratio)

 1 km:   601 x 601 x 51 vertical levels    (15:1 nest ratio)

 1-way nesting but with large 15 km upstream area



 

DomainsDomains
15 km
Domain

1km
Domain

AA AA’’

CC

CC’’



 
15 km Domain Conditioning via BC?: 850 Qe, SLP
  12 UTC  3/8/92   06 UTC  3/9/92

  MM5 Control-NOAHMM5 Control-NOAH

  WRF Control (NOAH)WRF Control (NOAH)

  MM5 Control-NOAHMM5 Control-NOAH

  WRF Control (NOAH)WRF Control (NOAH)



 
15 km Domain Conditioning via BC?:  Qe, V

  12 UTC  3/8/92   06 UTC  3/9/92

  MM5 Control-NOAHMM5 Control-NOAH

  WRF Control (NOAH)WRF Control (NOAH)

  MM5 Control-NOAHMM5 Control-NOAH

  WRF Control (NOAH)WRF Control (NOAH)
A

A
A’

A’



 

1 km Ensemble Results:  12 UTC 3/9/92     850 Qe

WRF Mean RRTMYSU

MM5 Mean Reisner1 CCM2



 

               Sample 1 km Cn
2 results: 03/09/92 12 UTC         850 mb

CCM2

YSU

MM5 Mean

WRF Mean



 

 Early Verification, 1 km MM5 Ensemble: T and Td
Dewpoint Temperature (°C) for Dallas/Fort Worth,TX  9 March 1992
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Summary

MM5 vs. WRF substudy part of larger process to determine
ensemble/probabilistic prediction of meso-γ/micro-α scale refractivity
parameters

Double nested approach not entirely ideal but for shorter time scales of
prime ARL interest ( 0-12 hr) may be workable

Key points to dateKey points to date
 15 km outer domain evolutions agree reasonably in synoptic/meso-α

aspects
 15 km domain evolutions differ significantly at meso-β and finer scales

between MM5 & WRF--both phase and structure differences
 These differences translate to the nested 1 km subensembles, often

dominating over variability from variety of physics choices
 MM5 members tend to show greater variability from physics
 Cn

2 shows substantial degree of variability (uncertainty), even w/o
moisture, and w/in each subensemble

 Thus far, some general biases present in both models in 1 km
members/means at night: WRF warm; MM5 cool; moisture biases less
general--how much systematic, how much phenomenology/phasing?

 More work to determine if there is a More work to determine if there is a ““clear winnerclear winner””



 

Questions?
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2 = refractive index structure parameter
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2 = temperature structure function parameter

P = dry atmospheric pressure (hPa)
T = temperature (K)
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and u, v = horizontal wind components (m/s)
z = geometric height (m)

              q = potential temperature, defined by
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1 km Results:  12 UTC 3/9/92     Θ/V/Qv     C-C’ Section

WRF Mean

YSU

MM5 Mean
Reisner 1

 after Neiman et al
(1998), Fig. 10



 

Dewpoint Temperature (°C) for Dallas/Fort Worth, TX  9 March 1992
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Dewpoint Temperature (°C) for Shreveport, LA (SHV) March 9, 1992
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Temperature (°C) for Dallas/Fort Worth, TX (DFW) 9 March 1992
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 Early Verification, 1 km WRF Ensemble: T and Td

Temperature (°C) for Shreveport, LA (SHV) 9 March 1992
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