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What is an Ensemble Kalman Filter (EnKF)?

Given forecast ensemble, valid at some ¢

> estimate forecast-error covariances needed for DA using sample
covariance of ensemble

> perform analysis for each member based on obs available at ¢
= analysis ensemble

> integrate forecasts from analysis ensemble to the time of next
observations

Combines data assimilation and ensemble forecasting

> analyses plus their uncertainty

Uses “flow dependent” forecast-error covariances

> 3DVar covariances (typically) assumed stationary, isotropic,
homogeneous
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Update Step: Schematic Radar Example

Update w given an observation of v,

a) forecast ensemble and obs. b) wpdated ensemble
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> let vf = Hx/; compute for each member

> For each grid point ¢, estimate from ensemble

¢; = (PTHT); = Cov(w!,v!), d=HP'HT + R = Var(v/) +R

trrr
> update each member at ith grid point,
wt = w! + (& /d)(v, —vf +€) e~ N(0,R)



EnKFs for WRF

Presently, 3 implementations at different institutions
> typically, 20-100 members

> deterministic/square-root versions of EnKF
> serial processing of observations, with covariance localization
>

parallel computations on linux clusters with slow interconnect

Real-time implementation at UW

>  http://www.atmos.washington.edu/“enkf/enkfpy.cgi

At NCAR, use the Data Assimilation Research Testbed (DART)
>  http://www.cgd.ucar.edu/DAl/hawaii_release.html

Initial issues
> Lateral BCs in forecast step?

> Are EnKF analysis increments balanced?

> How does EnKF compare with 3DVar?



Lateral BCs

In limited-area model, lateral BCs a source of uncertainty
> ensemble forecasts require ensemble of lateral BCs

> global ensemble schemes not designed/tuned for very short range

Approaches for ensemble BCs

> preferred: ensemble from EnKF on larger domain

> ad hoc: draw BC perturbations from Gaussian with 3DVar covariances
or from (scaled) perturbations from climatology

Ad-hoc approaches inferior, but not horrible

> Torn et al. (2005),
http://www.atmos.washington.edu/~hakim /papers/torn_etal _2005. pdf



EnKF/3DVar Comparison

Performance of EnKF for LAM?
> WRF 3DVar as benchmark

Importance of EnKF's ‘flow dependent’ covariances?
> in LAM, benefits suppressed by ad hoc treatment of BC uncertainty
> enhanced by local effects (e.g. orography)?

Consider synoptic scales, CONUS domain
> balances assumed in 3DVar best suited to such flows

> degree of imbalance in EnKF, 3Dvar analyses?



Experimental Design

> obs from NA rawinsonde
network

> domain (200 km) and obs
locations shown

> assimilate u, v, T every
12h

> LBCs from GFS analyses
> cycle for Jan 2003




EnKF/3DVar Comparison

> T analysis increment, day 10, single T" observation at 850 mb

T(K) 850(hPa) 2003-01-11 00:00:00 |

T(K) 850 (hPa) 146837 days 0 sec
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EnKF/3DVar Comparison
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EnKF/3DVar Comparison
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Comparison with GFS Analysis

> 500-hPa heights and winds, 00UTC 31 January
> EnKF (left; A = 60 m), GFS (center), difference (right; A = 20 m)

EnKF geopatential and winds at 500 hPa WCEP/AWN geopatential and winds at 500 hPa EnKF -AVM geopatential at 500 hPa
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EnKF/3DVar Comparison

> rms dps/0t as function of ¢
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Conclusions

Lateral boundary conditions
> BC perturbations from ‘exterior’ EnKF preferred, but not essential

> scaled perturbations drawn (randomly) from 3DVar background
covariances and from climatology both perform acceptably

Comparison with 3DVar
> in OSSEs, EnKF analysis errors 20-30% smaller than for 3DVar
> for real obs, EnKF obs-minus-forecast diffs noticeably smaller

> balance of increments comparable to 3DVar



Why the EnKF?

Ensemble-based covariance model requires few assumptions

> appears to be applicable to variety of scales and domains with
relatively little tuning

> e.g. convective scales (Snyder and Zhang 2003; Dowell et al. 2004;
Caya et al. 2005)

A flexible research tool

> easy to implement and maintain—no adjoints needed for model or
obs operators

> basic parallelization is straightforward
> easily accomodates nested-grid models

> facilitates use of unconventional obs

Basis for a unified EF /DA system

> provides estimates of analysis and forecast uncertainty



EnKF Analyses Across Multiple Domains

Have implemented EnKF for multiple, nested domains
> innovations calculated using finest available grid
> all grid points w/in localization radius are updated

> minor extension to code

D1

D2




Assimilation of Vortex Position

Have frequent obs of hurricane position
> analyzed vortex should be consistent with these

> to use in EnKF, simply need “position” operator

(b) Ensemble tracks, EXPERR (a) Ensemble Tracks, EXPR20
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Testing of Lateral BC schemes

Assimilate simulated observations, assume perfect model
> CONUS domain

> observations of column dry-air mass (~ ps)

EnKF on larger domain provides standard of reference

Compare: ensemble BCs from larger-domain EnKF, from 3DVar
perturbations, and from climatological perturbations

See Torn, Hakim and Snyder (2005)



Testing of Lateral BC schemes

> (left) Difference in time-averaged, rms height error at 500 mb between
large-domain EnKF and EnKF with 3DVar LBC perturbations

> (right) As above, but summed over all grid points a given distance
from the boundary and for various LBC schemes
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EnKF/3DVar Comparison

> rms errors (both first guess and analysis) over entire domain
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EnKF/3DVar Comparison

> rms errors on inner 1/4 of domain
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EnKF/3DVar Comparison

> rms errors on inner 1/4 of domain
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EnKF/3DVar Comparison

> Ratio of time-av'd EnKF rms T error to that of 3DVar at 500 mb
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Detalls

Lateral BC experiments
> experiment extends over 15 days
100 km grid spacing
250 u obs, spaced roughly every 500 km
obs assimilated every 6 h

truth run initialized with NCEP GFS analysis from 18 UTC 18 March
2003, and uses lateral BCs from subsequent GFS analyses

100 members in EnKF

> covariance localization of 3000 km
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Detalls

3DVar comparisons

>

v v v vV ¥

experiment extends over 10 days
200 km grid spacing
obs are columns of u, v, T" at locations of NA radiosondes, every 12 h

40 members in EnKF

covariance localization of 2500 km

construct ICs for 41 ensemble members by adding 3DVar perturbations
to GFS analysis from 00 UTC 1 January 2003; thus, 1st EnKF analysis
approximates 1st 3DVar analysis.

construct ensemble of 41 lateral BCs by adding climatological
perturbations scaled by 0.2 to subsequent GFS analyses

truth run uses 41st IC and lateral BCs



Initializing “True” State and
Ensemble

e Construct N+1 nitial states

— AVN analysis (1 Jan 03) + perturbations drawn
randomly from 3DVar covariances

e Construct N+1 lateral BC’s
— AVN analyses (1-10 Jan 03) + perturbations

— Perturbations are deviations from Jan climatology,
scaled by 0.2

 EnKF uses first N initial states and LBCs; true
state use N+1st
— Ensemble and true state drawn from same pdf



The Ensemble Kalman Filter (EnKF)

Monte-Carlo approach

> work with samples rather distributions

Sequential method: given ensemble at ¢ = #;,
> forecast each member to ;. 1, time of next observations
> update each member at #; 4

> continue as above, from ¢ = #5411



10-day average of rms surface pressure tendency
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