The Weather Research and Forecasting Model Based 4-dimensional Variational Data Assimilation System [WRF-(4D)Var]

Xiang-Yu Huang[†], Qingnong Xiao, Wei Huang, Dale Barker, Ying-Hwa Kuo, John Michalakes, Zaizhong Ma[‡]

National Center for Atmospheric Research

- † On leave from Danish Meteorological Institute, Copenhagen, Denmark
- ‡ On leave from Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.

Outline

WRF-(4D)Var project
 WRF-(4D)Var formulation
 Current status
 Near future plan

WRF-(4D)Var project

Supported by AFWA

Schedule

- FY04: prepare. (wrf model, simplified model, testing TAF on wrf subroutines.)
- FY05: construct. [4D-Var framework, basic (dry) wrf TL and AD components, initial experiments.] – stage I and stage II.
- FY06: refine. (more physics, parallel code, extensive testing.) stage III and stage IV.

Why 4D-Var?

- Use observations over a time interval, which suits most asynoptic data.
- Use a forecast model as a constraint, which ensures the dynamic balance of the analysis.
- Implicitly use flow-dependent background errors, which ensures the analysis quality for fast developing weather systems.

Variational methods $J = \frac{1}{2} \left\{ \left(\mathbf{x} - \mathbf{x}_0^b \right)^T \mathbf{B}^{-1} \left(\mathbf{x} - \mathbf{x}_0^b \right) + \left[H(M(\mathbf{x})) - \mathbf{y} \right]^T \mathbf{R}^{-1} \left[H(M(\mathbf{x})) - \mathbf{y} \right] \right\}$ δx Observations y (new) Forecast $\mathbf{x}_{\mathbf{0}}$ Model state ආ Jo 0 d Analysis (initial condition for NWP) Jb Background (old forecast) the assimilation window kth observation window t_0 \mathbf{t}_2 Time \mathbf{t}_1 t_K ... tk

Algorithms

4DVAR:

 $J' = \mathbf{B}^{-1}\delta \mathbf{x} + \mathbf{M}^T \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H} \mathbf{M} \delta \mathbf{x} + \mathbf{M}^T \mathbf{H}^T \mathbf{R}^{-1} \{ H[\mathbf{M}(\mathbf{x})] - \mathbf{y} \}$

3DVAR:
$$M = \mathbf{M} = \mathbf{M}^T = \mathbf{I}$$

 $J' = \mathbf{B}^{-1}\delta\mathbf{x} + \mathbf{H}^T\mathbf{R}^{-1}\mathbf{H}\delta\mathbf{x} + \mathbf{H}^T\mathbf{R}^{-1}[H(\mathbf{x}) - \mathbf{y}]$
FGAT: $\mathbf{M} = \mathbf{M}^T = \mathbf{I}$, but $M \neq \mathbf{I}$
 $J' = \mathbf{B}^{-1}\delta\mathbf{x} + \mathbf{H}^T\mathbf{R}^{-1}\mathbf{H}\delta\mathbf{x} + \mathbf{H}^T\mathbf{R}^{-1}\{H[M(\mathbf{x})] - \mathbf{y}\}$

Important issues

- *H* observation operator, including the tangent linear operator **H** and the adjoint operator **H**^T.
- *M* forecast model, including the tangent linear model **M** and adjoint model **M**^T.
- **B** background error covariance (N*N matrix $\sim 10^{14}$).
- **R** observation error covariance which includes the representative error (K*K matrix 10¹²).

WRF-(4D)Var

- *H*, **H** and **H**^T: WRF-3DVar (with modifications)
- **R**: WRF-3DVar
- **B**: WRF-3DVar
- *M*: WRF model
- M and M^T :
- WRF-4DVar framework

Stage I. Prepare VAR (start from WRF-3DVar) - finished.

Subroutine	Comments	Current status
innovation	Break H to H_k	Ready due to FGAT
wrf_nl	Exists	Start with a system call
vtox	The same as in 3DVAR	Ready
wrf_tl	New development	Start with I
xtoy	Break H to $\mathbf{H}_{\mathbf{k}}$	Done
Jo_grad_y	Can be applied for all obs win	Ready
xtoy_ad	Break \mathbf{H}^{T} to $\mathbf{H}^{\mathrm{T}}_{\mathbf{k}}$	Done
wrf_ad	New development	Start with I
vtox_ad	The same as in 3DVAR	Ready

Stage II. Use separate executables, communicate through I/O

The very first WRF-4DVar run

Stage III. Integrate WRF-4DVar (FY2006)

Stage IV. Improve the performance (FY2006)

- Multi-resolution
- MPP
- More physics
- Data assimilation experiments

Summary

- 1. WRF-(4D)Var project: 2004-2006.
- 2. WRF-(4D)Var formulation:
 - Based on the existing WRF 3D-Var and WRF model
 - Multi-incremental
 - Simplified tangent linear and adjoint models
- 3. Current status of WRF-(4D)Var:
 - Necessary modifications to WRF-3DVar have been completed.
 - WRF-(4D)Var framework has been done.
 - The prototype has been put together and "can run".
- 4. Near future plan
 - Evaluate the performance through single observation experiments and case studies
 - Prepare for the Stage III (I/O to memory) and Stage IV (more physics, MPP, etc) work.