Propagating Nocturnal Convection within a 7-Day WRF Model Simulation

Stan Trier and Chris Davis

Collaborators: Dave Ahijevych, Sherrie Fredrick, Morris Weisman

National Center for Atmospheric Research Boulder, Colorado

Diurnal Frequency Diagrams of Convection

From Carbone et al. (2002; JAS)

July 3-10, 2003

7-Day Simulations Using WRF (00Z 3 July to 00Z 10 July 2003)

- Initial and Boundary Conditions Obtained from ETA Analyses ($\Delta t = 3h$)
- Yosei University PBL Scheme with Noah LSM
- Long and Shortwave Radiation Parameterization
- 4-km Simulation:
 - Central US Regional Domain (625 x 445 x 35)
 - Explicit Convection (No Cumulus Parameterization)
 - Lin et al. (1983) based Microphysical Scheme

Comparison of Rainfall Characteristics From Observations and Regional Scale Simulations

- Coherent propagating rain streaks (defined as latitudinally averaged RR of 0.5 mm/h for 6 h or 500 km with time width < 6 h) present in both observations and both simulations.
- Abundance of stationary or very slowly propagating afternoon precipitation in 22-km simulation relative to 4-km simulation.
- Excessively heavy and frequent precipitation near eastern domain boundary in 22-km simulation.

Rain Streak Phase Speed Statistics (3-10 July 2003)

			Distribution				
	<u>Number</u>	<u>Mean (m/s)</u>	<u>5 – 10</u>	<u>10 - 15</u>	<u>15 - 20</u>	<u>20 - 25</u>	<u>> 25 m/s</u>
Observations	14	18.7	2	1	4	6	1
4-km Fully Explicit	13	19.4	0	1	6	6	1

• Coherent propagating rain streaks are defined as latitudinally averaged RR of 0.5 mm/h for 6 h or 500 km with time width < 6 h.

Model 900-hPa Potential Temperature, Winds and Reflectivity

NOWRAD Radar Reflectivity Mosaic

1012-25

0700 UTC 4 July

0400 UTC 5 July

0700 UTC 6 July

Model 900-hPa Potential Temperature, Winds and Reflectivity

205

. 62

76 B 2

0500 UTC 8 July

0800 UTC 9 July

Composite System-Relative Flow, Theta (Contours), Theta-e (Colors)

Composites of the Mesoscale Environment for Mature Stage

Composite Vertical Cross Sections of the Mesoscale Environment

Forward Trajectory Analysis for a Strong Frontal Case Example

Conclusions

- 7-day WRF simulation reproduces statistics of convection
 - Zonal propagation speed
 - Diurnal frequency
- Mesoconvective structure is realistic (except missing stratiform)
- Mature phase nocturnal convection is elevated
 - Propagates within narrow latitudinal corridor defined by lower-tropospheric frontal zone
- Elevated moisture emanates from within frontal zone and from LLJ air being transported northward and being lifted over frontal zone
- Convection typically weakens around sunrise as it moves into less favorable environment
 - lack of strong frontogenetic forcing
 - smaller vertical shear and CAPE

Diurnal Frequency and Composite Mesoscale Environment of Propagating Convection

