Explicit Convective Forecasting with the WRF Model

Morris Weisman, Chris Davis, Wei Wang

WRF-MM5 Workshop

June 30, 2005

WRF Realtime Convective Forecasting

May 1 – July 31 4 km 00 UTC -- 36h

2003, 2004, 2005

WRF Real-time Forecasts: 2004, 2005

- =4-km from 0000 UTC 36 h
- Version 1.3 (2.0.3.1)
- Eta initial and boundary conditions (40 km)
- Physics:

Lin et al. (5 cat.) microphysics (WSM6) YSU PBL (first-order closure)

Noah LSM (HRLDAS)

- 2000 km X 2000 km domain / 2800 km X 2600 km domain
- ■5.0h (6.5h) on 128 (192) IBM Power-4 processors

Mesoscale & Microscale Meteorology Division

04 June 2005 00 UTC

NCAR

Mesoscale & Mieroscale Meteorology Division

29 April 2005 00 UTC

Mesoscale & Microscale Meteorology Division

Do we have enough evidence to warrant switching to ``convection permitting'' resolutions operationally? How do we make that decision? Who is ``WE'' ?? Let's consider the 24-30 h forecast challenge (i.e., the next diurnal cycle).

How does the 4 km WRF-ARW ''guidance'' compare to the ETA?

May 25, 2004

May 30, 2004

Introducing: The ``Morris Threat Index''

Considered 24-30 hr Forecast Period:

- Overall Convective Mode/Severity
- (1) popcorn or no convection (< .25 in)
- (2) organized clusters (.25-1.0 in)
- (3) squall Lines, bow echoes, etc. (> 1 in)

- Overall Forecast
 <u>Accuracy</u>
- (1) no correspondence
- (2) many significant features forecast within ~ 3 h, 300 km
- (3) significant features forecast well

WRF

ETA

<u>CAT 3:</u> severe, well organized (> 1 in)

CAT 2: some organization (.25-1.0 in)

CAT 1: weak, disorganized (< .25 in)

	Convective	e Mode/Int	ensity	
	3 (severe)	4 4	2	1 (weak)
OBS	28	6	0	49
WRF-ARW	21	7	3	44
ETA	30	7	72	
Fore	ecast Mode/	Intensity	versus OI	BS
Fore	ecast Mode/ weak	Intensity v under forecast	versus OI agree	3S over forecast
Fore WRF-ARW	ecast Mode/ weak 28	Intensity v under forecast 32	versus OF agree 48	3S over forecast 30

Good:

OK:

Bad:

Overall Forecast							
	good	ok	bad				
WRF-ARW	43	73	22				
ETA	42	76	14				
WRF - ARW versus ETA							
better	agree		worse				
27	72		32				

Failure Modes: 13 July 2004

WRF 21 h

Failure Modes: 13 July 2004

ETA 24 h 300 mb

ETA 24 h LI

How well does 4-km WRF represent the climatological behavior of convection? (e.g., diurnal cycle, episodes)

Longitudinal 1 hr Precip. May 10-31, 2004

Stage IV

Diurnal Average Frequency: 2004

Threshold - 0.02 mm

4 km WRF

Threshold - 0.02 mm

Summary

Considering a 24-30 hr forecast:

 4-km WRF strongly controlled by resolved ETA forcing.... Thus, WRF and ETA offer similar overall guidance as to intensity, timing, and location of significant convection

 4-km WRF adds valuable information as to MCS mode and propagation (e.g., squall lines, bow echoes, MCVs)

 4-km WRF more accurately represents diurnal cycle and convective episodes

•Need more investigation of failure modes

WRF-ARW 2005 real-time forecasts can be found at:

http://box.mmm.ucar.edu/projects/wrf_spring/ http://rain.mmm.ucar.edu/mm5/

Also archived at:

http://www.joss.ucar.edu/wrf-2004/catalog/ http://www.joss.ucar.edu/wrf-2005/catalog/

May 20 21 UTC

Diffusion

4km EM-WRF -- NCAR/MMM Fost: 21 h Max Reflectivity

No Diffusion

Init: 00 UTC Thu 20 May 04 Valid: 21 UTC Thu 20 May 04 (15 MDT Thu 20 May 04)

4km EM-¥RF -- NCAR/MMM Fost, 21 h Max Reflectivity

Init. 00 UTC Thu 20 May 04 Valid: 21 UTC Thu 20 May 04 (15 MDT Thu 20 May 04)

May 21 00 UTC

No Diffusion

110 W

4km EM-WRF -- NCAR/MMM Fost: 24 h Max Reflectivity

600

500

400

300

200 Ē

100

100

200

300

Init: 00 UTC Thu 20 May 04 Yalid: 00 UTC Fri 21 May 04 (18 MDT Thu 20 May 04)

90 W

4km EM-WRF -- NCAR/NMM Fost: 24 h Max Reflectivity

Diffusion

Init. 00 UTC Thu 20 May 04 Valid: 00 UTC Fri 21 May 04 (18 MDT Thu 20 May 04)

600

60 65 700

dia z

100 W

''T''

35 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Model info₁ V2.0 No Cumulus YSU PBL Lin et al 4.0 km. 34 levels. 24 sec

400

500

600

0.000

85 🖬

100 11

95, FI

Longitude

90 M

0.000

85 11

105 11

95, FI

Longitude

90 TI

100 11

Progress

4 km WRF simulations exhibit:

- A surprising ability to forecast mesoscale convective systems (MCS) out to 36 h
- A demonstrated skill at depicting MCS mode (bow echoes, mesoscale convective vortices, supercell lines)
- An ability to spin-up convective systems within
 3-4 h from a cold start.
- Significant improvement in forecast guidance over convective parameterization??

Challenge:

- QPF problematic (too much convective precip)
- Stratiform regions appear too small (microphysics?)
- Convective systems often fail to decay (BL evolution?)
- Initialization (data assimilation)
- Verification methods

Mesoscale & Microscale Meteorology Division

For Convective Mode 3 (severe)							
		0					
		YES	NO				
	YES	11	10	POD = .39			
WRF-ARW				FAR = .48			
	NO	17		CSI = .29			
OBS							
		YES	NO				
	YES	16	14	POD = .57			
ETA —				FAR = .47			
	NO	12		CSI = .38			

Latitudinal 1 hr Precip. May 10-31, 2004

Stage IV

WRF

Longitudinal 3 hr Precip. May 10-31, 2004

WRF

ETA

mn

How About QPF?

OBS

24 hr precipitation verification

<u>Valid 6/10/03</u> <u>12 UTC</u>

4 km WRF

29 May 2004 00 UTC

4-km WRF

Radar

24 May 2004 00 UTC

4-km WRF

Radar

11 June 2004 00 UTC

4-km WRF

Radar

Radar

<u>May 31, 2004</u>

ETA

June 3, 2004

03 GMT

<u>May 25, 2004</u>

ETA

Radar

<u>May 30, 2004</u>

Radar

June 10, 2003

ETA

June 11, 2003

June 12, 2003

<u>Radar</u>

ETA

July 6, 2003

