June 29, 2005 WRF/MM5 Users' Workshop

Simulation of Meteorological Conditions of the Houston-Galveston Area with WRF for the TexAQS 2000 Episode

Fong Ngan, Dr. Daewon W. Byun, Dr. Seung-Bum Kim IMAQS, Department of Geosciences, VH

- WRF is a next-generation mesoscale meteorological model and is expected to be used to simulate the meteorological fields for air quality modeling.
- The weather parameters such as surface wind and air temperature play a key role determining air quality in a region.
- The meteorological conditions must be accurately simulated to correctly model Houston air quality.

In this study, we test if WRF can simulate met. conditions for Houston/Galveston area during TexAQS 2000.

Nesting simulation

Time period: IC/BC: **Resolution:** Nudging: Nesting:

Model version: WRF v2.0.3.1 & MM5 v3.6.7 2000/8/22 00UTC ~ 9/2 00UTC From 40 km Eta reanalysis data (AWIP) 108km, 36km, 12km and 4 km NO

2-way nesting for 1st & 2nd domain, 1-way nesting for the others

	MM5	WRF	
Microphysics	Simple ice (Dudhia)		
Radiation	RRTM	RRTM (longwave)	
		Dudhia (shortwave)	
LSM	Noah LSM		
PBL	MRF		
CU scheme	Grell-Devenyi		
	None for 4km domain		

Nesting simulation

Time Series of D4 (4 km domain): 2 m Temperature

The IC/BC inputs were generated by ETA reanalysis data

- But WRF & MM5 without nudging fail to simulate observed changes in temperature.
- Through the boundary input alone, synoptic signals were not able to propagate from coarse into fine domain.
- Without FDDA, models show very flat diurnal variations (effects of local dynamics controlled by sunrise and sunset).

Single domain simulation

Lack of the "grid-nudging tool" with WRF is the main cause of failure.
 Use single domain for the simulation

Model version:WRF v2.0.3.1 & MM5 v3.6.7Time period:2000/8/22 00UTC ~ 9/2 00UTCIC/BC:From 40 km Eta reanalysis data (AWIP)Physics:Same as before

Grid size: Resolution: Nudging:

161*146*43 layers 4 km NO

2 m temperature

- Urban sites:
 WRF improves min temp.
 but still too high
- Rural site:
 Min temp. and max temp. are mildly underestimated
- Well correlated with obs.

Scattered diagram of 2 m temperature

PBL Height

Scattered diagram (5 profiler sites):
 WRF simulated the PBL height better than MM5

During daytime models are able to capture PBLH

≻At nighttime

MM5 dose not report PBL heights (~33m) WRF reports estimated values But, there is no nighttime OBS to compare the results

2m Temperature

WRF

(21UTC = 15CST)

PBL Height

(21UTC = 15CST)

WRF-MM5

WRF

MM5

2600

2400

2200

2000 1800

1600

1400

1200

1000

800

600

400

97.5₩ 97W 96.5W 96W 95.5₩ 95W 94.5W 94W 93.5₩ 93₩ 92.5W

10 m Wind Speed

model performance characteristics at urban and rural sites are similar.

somewhat noisy

- ➢ doing well on 26 ~ 29, Aug.
- needs improvement

10 m Wind Vector

(from 17 to 22 UTC)

Black arrows: WRF result Red arrows: MM5 result

Sea breeze developed at the late afternoon. The development of sea breeze in WRF was later than MM5

Sensitivity Tests

	WRF	YSU	Yamada	RUCY
Microphysics	Simple ice (Dudhia)			
Radiation	RRTM (longwave)			
	Dudhia (shortwave)			
LSM	Noah LSM			RUC LSM
PBL	MRF	YSU	Yamada	Yamada
CU scheme	None			

Sensitivity tests --- 2m temperature

day (CST)

Results of WRF, YSU and Yamada runs are almost the same. 2-m Temp. by RUCY run is underestimated more than those by others; but it overestimated min temp for urban sites.

Sensitivity tests --- PBLH

.

 YSU PBL scheme does not report PBLH at nighttime. (~17m)
 RUCY run underestimated PBLH much more (gray dots) while YSU run overestimated PBLH more (blue dots)

Summary

> WRF is not ready for nesting simulation without FDDA.

No synoptic phenomena can propagate to the fine domains through BC alone.

Single domain simulation of WRF: Simulated 2 m temperature is highly correlated with the OBS.

Mildly underestimated min and max temp.

Development of PBL can be captured but overestimated

Nighttime measurements can help to evaluate results

10 m wind speed results varied during the simulation period

Future Work

- MCIP3 with WRF and MM5 output for generating met. inputs for air quality model, CMAQ.
- Evaluate WRF-CMAQ and MM5-CMAQ to figure out the best way for linking WRF and CMAQ while maintaining the dynamic consistency in the off-line air quality modeling.

Time Series of D4 (4 km domain): 10 m wind speed

WRF-CMAQ v.s MM5-CMAQ

0.010

0.000

 ppmV
 1
 90
 ppmV
 1
 90
 90

 August 25,2000 15:00:00
 \rightarrow August 25,2000 15:00:00
 \rightarrow August 25,2000 15:00:00
 \rightarrow \rightarrow Min= 0.006 at (32,42), Max= 0.298 at (26,99)
 \rightarrow \rightarrow <td

0.010

0.000

MM5-CMAQ O3 Layer 1

a=CONC.radm2_cis4_aq.TX_CCTM_HG04.2000238

WRF-CMAQ O3 Layer 1

WRF-CMAQ O3 Layer 1

MM5-CMAQ O3 Layer 1

WRF-CMAQ O3 Layer 1

MM5-CMAQ O3 Layer 1

Wind Profile

08/25

08/26

Observation Sites

2m Temperature

32N

31.5N

PBL Height

-2

-3

-4

-5

10 m Wind (21UTC = 16:00 p.m)

WRF

10m wind (825 2100 UTC)

10m wind (830 2100 UTC)

5

10m wind (825 2100 UTC)

MM5

10m wind (830 2100 UTC)

Introduction

ex. Different wind fields can be obtained by different models
 → results in different plume trajectories

The meteorological conditions must be accurately simulated to correctly model Houston air quality. In this study, we test if the new state-of-science weather forecasting model, WRF, can simulate met. conditions of TexAQS 2000.

Time Series: PBL Hight

10 m Wind Speed (single domain)

Future Works

Improve the wind field simulation with WRF thorough the application of a grid nudging tool

Apply WRF output to air quality modeling to develop a method to effectively link WRF and an AQ model maintaining dynamic consistency

Acknowledgment:

Dr. Seung-Bum Kim Dr. Sharon Zhong, Dr. Barry Lefer, Dr. Bernhard Rappenglueck Ms. Fang-Yi Cheng, Mr. Craig B. Clements