

Automatic calibration of a flood forecasting system for the Odra river

K.-P. Johnsen, J. Pestel, H. Messal and H.-T. Mengelkamp

GKSS Research Center Geesthacht GmbH, Germany

MOTIVATION

Extreme flooding event in 1997:

CONTENT:

WRF/SEROS flood forecasting system for the Odra

How well can we describe the precipitation over the Odra watershed ?

How well can we determine the discharges of the Odra river ?

Weather Forecast & Research Model (WRF)

- Non-hydrostatic NWP model WRF V2
- Initialization with AVN data
- 3 nesting levels
- time: May to September 2002
- time step: 30 s
- Microphysics: Kessler scheme
- PBL scheme: Yonsei Univ. scheme
- Cumulus parameterization: Grell-Devenyi scheme
- Longwave radiation: Rapid RTM
- Shortwave radiation: Dudhia scheme
- two-way nesting
- one-way coupling to the Land surface model & routing scheme SEROS

WRF and 387 PrecipStations above the Odra watershed

Nesting Level 2 – 17.6 km

Nesting Level 3 – 4.5 km

WRF: Mean abs.Diff. of meas. and modeled precip. (%)

May to September 2002

%

One-way coupling between WRF and SEROS

Forcing data of SEROS:
Precipitation
Temperature at 2 m
Wind speed at 10 m
Air pressure
Relative humidity at 2 m
Short-wave radiation
Long-wave radiation

the Odra watershed and subcatchments

SEROS

calibration for each subcatchment

Dx = Dy = 4.4 km

SEROS calibration

SCE-UA: Shuffled Complex Evolution (University of Arizona)

SEROS calibration parameter

Parameter	units	description	lower limit	upper limit
BI	[-]	VIC-Parameter surface runoff	0.001	1.00
CBAS-L3	[-]	Exponent Baseflow, 3rd soil layer	1.00	3.00
T1/2-L3	[d]	Arno time constant, 3rd soil layer	50	1000
WS-L3	[-]	part.baseflow, 3rd soil layer	0.40	0.99
DM-L3	[mm/s]	Max. runoff, 3rd soil layer	0.001	0.500
CBAS-L6	[-]	Exponent baseflow, 6th soil layer	1.00	3.00
T1/2-L6	[d]	Arno time constant, 6th soil layer	50	1000
WS-L6	[-]	part.baseflow, 6th soil layer	0.40	0.99
DM-L6	[mm/s]	Max. runoff, 6th soil layer	0.001	0.500
iniGW	[m]	Initial ground water	1.50	4.0
rsFactor	[-]	Corr. min. stomata res.	0.50	2.50
Ν	[-]	Unit Hydrograph no. of reservoirs	1.0	4.0
K	[h]	Time delay in reservoir	1.0	24.0
Diff	[m ² /s]	Diffusion rate (in 1000)	0.8	8.0
Velo	[m/s]	kinematic wave velocity	0.2	3.0

SEROS calibration: efficiency

Gozdowice

WRF/SEROS and discharge measurements (*)

SEROS: Sensitivity of discharge on precipitation differences

Nash-Sutcliffe

Efficiency (%)

CONCLUSIONS

Automatic calibrated WRF/SEROS flood forecasting system for the Odra watershed was developed

System can be adopted to other catchments

Currently one-way coupling between WRF and SEROS two-way coupling is planned

