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Predicting the Earth System
Across Scales

Overarching Goal:

« To improve our understanding and simulation of the complex, 2-
way scale interactions that are critical to climate and weather
predictions

Objectives:

« To improve downscaling from global climate simulations for
accurate regional predictions

« To improve upscaling of regional processes in global climate
simulations;



Gettlng the Tropical Modes
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ERIOD (3aY5)

Currently CAM and CCSM have difficulty
capturing the modes of tropical variability, from
equatorial Rossby, through westward inertia
gravity and MJO. Even the Kelvin modes are
poorly captured.

This program will focus on understanding and
reducing such biases.

A working hypothesis is that the upscale
development from organized tropical convection
IS a critical factor.

By utilizing cloud-resolving nested models in
critical areas, we plan to both test this hypothesis
and develop an approach to improving CAM and
CCSM in this important characteristic.

Taking advantage of Blue Vista during its
bedding in period, we performed WRF
simulations with cloud resolving nest to
investigate the usefulness of the nesting
approach



Nested Regional Climate Model

WRFV2.1
Physics:
« CAM radiation: radt = 30min
« WSM-6 microphysics
* Noah LSM
 YSU bounday layer
« Kain Fritsch (new Eta) convection

Code modifications:
» Periodic lateral boundary conditions in East-West.
 Updated lower boundary condition: SST and Vegetation Fraction.

» Wide buffer zone of 10 grid points using a combined linear-
exponential relaxation.

« Expanded diagnostic outputs including the ISCCP simulator and
accumulated fluxes



Tropical Channel Simulations

Forcing Data:
« NCEP-NCAR reanalyses at north and south boundaries (6 hourly at 2.5°)
» Periodic lateral boundary conditions East-West.

 Lower boundary conditions: AMIP SST (0.5 degree) and mean monthly
vegetation fraction

Vertical Levels:

« 35 sigma levels for all domains.

« Terrain following close to surface transitioning to pressure levels at model
top.

Model Qutputs:

» 3-hourly instantaneous 3D fields

* Hourly surface and TOA fields and averaged fluxes

Analysis and Evaluation:

» Climate diagnostics (Julie Caron and Jim Hack)

« EUROCS transect (Ruby Leung and Roger Marchand)

» Tropical cyclone statistics (Greg Holland)




Model Setup

Center latitude = 9.5 Center longitude = 180.0 Map projection = Mercator
Domain 1: 1112 x 255 grid points at dx = 36 km (Jan 1, 1996 to Jan 1, 2001)

Domain 2: 922 x 340 grid points at dx =12 km (Domains 1 + 2: Jan 1, 1996 to Mar 1, 1998)
Domain 3: 1783 x 673 grid points at dx =4 km (Domains 1 + 2 + 3: Jan 1, 1997 to Jul 1, 1997)
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EUROpean Cloud Systems Study
(EU ROCS) (Slebesma et aI 2002)
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Idealized transect along the eastern Pacific
representing the transition from
stratocumulus, shallow cumulus, and deep
cumulus

9 climate and weather models participated
Most models underpredict cloud cover in the
stratocumulus regime, and vice versa in the
trade wind and ITCZ region
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Accumulated Precip

Precipitation rate, mm/day
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1997 Tropical Cyclone Statistics
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Summary

The 36-km WRF tropical channel simulation reproduces large
scale climatic features reasonably well

Comparison of WRF, CAM, and MMF simulations over the
EUROCS transect shows that WRF simulates more realistic
structure of the ITCZ, but more extensive stratocumulus

The WRF tropical cyclone statistics compare well with
observations; this suggests the simulation may be a useful
dataset for investigating cyclogenesis and its relationship to
large scale circulation

Future studies will investigate the upscaled effects of tropical
convection by comparing the 36 km runs with and without
nesting, analysis of tropical modes, and climatic features
iIncluding the monsoon in different continents

These simulations will be extended using the Columbia
computing resources to provide a unique dataset for studying
scale-interactions, tropical modes, and their influence on large
scale and regional scale climate

A two-way coupled CAM-WRF will be developed as an
approach to incorporate upscaled effects to address CAM
biases
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Key Areas for Development

To Include regional earth system
components

Ocean and sea ice
Chemistry/aerosols/clouds

Land surface and hydrology (e.g., CLM, crop model
(including carbon/nitrogen), dynamic vegetation in LSM)

Biogeochemistry

Address model development, evaluation, computational
efficiency, model sensitivity

Priority — one-way coupling of atmosphere, updating of
seaice
Implement some components from CCSM to start with —

test them at the regional scale — need flux coupler similar
to CCSM



Key Areas for Development

Model numerics and physics for high-
resolution applications

Evaluate long term cloud resolving simulations to
understand limitations

Develop physics parameterizations for cloud resolving
simulations (e.g., microphysics, turbulence and shallow
convection, terrain effects on PBL and radiation, urban
effects)

Balance complexity and computational efficiency

Low resolution physics (subgrid topography, cumulus
convection)



Key Areas for Development

Nesting RCMs within global models
Two-way coupling allows both downscaling and
upscaling

Basic assumption: such coupling is only

Important in certain regions such as the warm
pool and monsoon regions

Address model compatibility issues
Maintain conservation in the host GCM



Key Areas for Development

Global WRF

A global WRF with nesting capability will ensure
compatibility of the regional and global domains

Include other earth system components
Examine alternative grid structures

Ensure global conservation (mass and
momentum)

Must be able to produce realistic TOA and
surface energy budgets and large scale
circulation



What are the science/application

guestions?

« Embed WRF in CCSM to study Arctic sea ice, etc. Need
compatible components between WRF and CCSM

« Polar climate, sea ice
 Extreme events

e Reconstruction/reanalysis
 Climate change

e Seasonal climate prediction
e Agriculture and land use

« Rainfall — distribution, frequency, and feedback to
landuse etc

 Model coupling (land, ocean, etc) — what software eng.
Framework should be used



What do we need In the near
term?

Earth system components — one-way coupling (WRF-
CAM), use of CCSM components, existing community
efforts (e.g., crop model)

Low resolution physics (e.g., cumulus convection,
subgrid topography, cloud fraction)

Systematic model evaluation
Framework for coupling earth system components

Framework for coupling WRF and CAM, and examine
Impacts of resolving clouds/mesoscale organization

Testing of global atmospheric WRF and address physics
for global WRF toward an atmospheric GCM



What do we need In the long
term?

 More complete regional earth system
model

* High resolution physics for nested models
and global cloud resolving model

e Global WRF for high resolution climate
system simulation?



Action Plan

Establish an advisory group built on the existing WRF RCM
working group to develop an action plan to prioritize and
Implement model development activities, and establish
stronger ties to the CCSM group.

Promote and coordinate community efforts in regional climate
research using WRF, and integrate model components from
community regional climate model development efforts into
the WRF single-source code.

Promote interactions between the regional and global climate
modeling communities to define research needs and priorities,
and identify opportunities to support collaborative model
development efforts that take advantage of the expertise and
experience from both communities.

Participate in community model intercomparison projects to
establish a benchmark against other regional climate models
applied to different geographical regions and climate regimes.

Coordinate with other WRF model development efforts that
address model physics for high-resolution applications and
coupling with other earth-system component models.
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