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Some of the scientific questions of MAX-Mex include:
! How do anthropogenic particulates evolve downwind?
! What are the uncertainties of aerosol radiative forcing in the

vicinity of megacities, such as Mexico City?
! What is the impact of Mexico City pollutants on local and

regional climate?
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! 3 domains: !x = 22.5, 7.5, 2.5 km
! 48-h simulations starting at 00 UTC (24 h spin-up period)
! anthropogenic emissions from 2000 inventory and SO2

emissions for Tula Refinery and Popocateptl volcano

! simulations use PNNL modules: CBM-Z
trace gas chemical mechanism, FAST-J
photolysis scheme, MOSAIC sectional
aerosol model, and aerosol-radiation
feedback

transport Tula Refinery (SO2 source)

Popocateptl (SO2 source)

T2

T1

T0

Future simulations will include data assimilation, chemistry
boundary conditions from global model (MOZART), emissions
from biomass burning source (based on satellite fire counts) and dust
sources (based on soil properties and predicted meteorology), and more
detailed evaluations when additional data becomes available.
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MILAGRO

Several collaborative field campaigns were conducted in Mexico
during March 2006 as part of the Megacity Initiative: Local and
Global Research Observations (MILAGRO).
! MCMA (NSF, DOE, Mexican)
! MAX-Mex (DOE)

Instrumentation WRF-chem

Preliminary Results

Preliminary simulations completed to evaluate performance of
WRF-chem and examine model assumptions before running more
comprehensive simulations.  Results are shown primarily from
19-20 March that had meteorological conditions favorable for
pollutant transport over T1 and T2.
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more scattering associated with SO4 produced
downwind of Tula and Popocateptl
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predicted wind speeds lower than observed
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! MIRAGE-Mex (NSF)
! INTEX-B (NASA)

model results at ~900 m AGL and at one time, but G-1 aircraft data at multiple altitudes and 2-3 h period
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Over-prediction of both elemental and organic carbon during nighttime stable boundary layer
Concentrations closer to observed during daytime, but large errors at times

Small errors in elemental carbon could lead to large errors in aerosol radiative forcing
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Summary:
! predicted mean meteorology and trace gases in qualitative

agreement with observations; however,
! predicted particulate volume generally too low with largest

uncertainties in aerosol optical properties
! refinements to model simulations needed before drawing

conclusions about magnitude of direct radiative forcing
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What happens to these particulates?


