

Coupling of WRF and AERMOD for Pollutant Dispersion Modeling

Amit P Kesarkar^{*1}, Mohit Dalvi¹, Akula Venkatram², Alan Cimorelli³, Akshara Kaginalkar¹ and Ajay Ojha⁴

*akesarkar@cdac.in

Background

- Pune Air Quality Improvement Program under **USEPA- MoEF (India) Initiative**
- Initial focus on Pm10
- Proposal to use AERMOD model for simulating pollutant dispersion
- Issue: Unavailability of hourly meteorological

Validation of WRF Outputs over Pune

- observations for Pune (& most of India)
- Likely solution: Meteorological model (WRF) output used as (psuedo) observations for AERMOD

20 Date April '05

Comparison of WRF and Observed Temperatures (°C) over Pune

Deviation of WRF from Observed temperatures: - 4.35 to 8.35 0C **Standard** Deviation : 2.460C, **Correlation Coefficient** : 91%

WRF Model Configuration

- Domains: 32 km-> 8 km 2-way nested
- Initialization: NCEP Final Analysis (FNL) data
- Microphysics: Lin et al
- Cumulus parameterization: Betts-Miller-Janjic
- Land Surface:Noah
- PBL parameterization:YSU PBL
- ^D Time step:180 sec.
- Period of simulation: 11-19 April 2005

WRF-AERMOD Modeling System

AERMOD:

- Developed by AMS/EPA Regulatory Model Improvement **Committee (AERMIC)**
- Steady-state Gaussian model, improved PBL, urban heat flux parameterization
- Emissions data : Inventory under Pune AQI Program
- WRF-AERMOD Offline Coupler Developed at C-DAC
- Couples Regional weather prediction model with Gaussian dispersion model
- Extracts surface and PBL parameters from WRF output;
- Preprocesses WRF output to produce input for AERMOD
- Bypasses need for AERMET preprocessor

Comparison of Average Angular Distribution of winds over Pune (11-19 April 2005)

Validation of Simulated PM10 Dispersion

Comparison of Observed and Simulated PM10 Dispersion

AERMOD underestimates PM10 concentrations

- Possibly due to absence of "background" levels in model.
- Daily variations are better represented

Acknowledgments

This work is a part of Pune Air Quality Improvement Program being undertaken by USEPA, MoEF and PMC with support from US-AEP.

Highlights

WRF output is able to provide realistic meteorological pattern for air quality models

1. Centre for Development of Advanced Computing (C-DAC), Pune, India 2. Dept. of Mechanical Engg., University of California at Riverside, CA, USA 3. US Environmental Protection Agency (Region -III) Office, Philadelphia, PA, USA. 4. Air Quality Management Cell, Pune Municipal Corporation (PMC), Pune, India

> AERMOD underestimates PM10 at most of the locations

Sensitivity to meteorology can be determined with different WRF parameterization schemes, preprocessing (use AERMET)

Required detailed study with :

information on background levels of pollutants

improved emission inventory

Validation of hourly meteorological and air quality data

Computational Atmospheric Sciences, Scientific and Engineering Application Group, Centre for Development of Advanced Computing, Pune Unversity Campus, Ganesh Khind, Pune 411007, India