Numerical Simulation of Heavy Snowfall over the Ho-Nam Province of Korea in December 2005 Using WRF

Kyo-Sun Lim and Song-You Hong Yonsei University, Seoul, Korea

Acknowledgement : Jung Choi

Snowfall over the Ho-Nam province is induced by strong continental highpressure systems -Air Mass Transformation Mechanism

-Intensity of precipitation is determined by differences of temperature between the sea surface temperature and cold air accompanied by continental high-pressure

Objective

✤ To show the capability of the WRF model in simulating heavy-snowfall over the Ho-Nam province.

▲ To investigate the effects of abnormal sea surface temperature on the snowfall.

✤ To find out the room for reducing the model bias.

To compare the capability of regional model (WRF,MM5 and RSM) in simulating regional climate over the East Asia during the winter time.

Part I

Evaluation of WRF model (Control Simulation)

Experimental Setup

Period

00Z01 December ~ 00Z31 December 2005

NCEP/DOE Reanalysis ${\rm I\!I}$ data

Physical option

MIC	WSM6
LWR	RRTM
SWR	Dudhia
LSM	Noah
PBL	YSU
Cumulus	Kain-Fritsch

Vertical resolution

23 layers

Domain

Evaluation of Large Scale Simulation

WRF - Reanalysis II data

40

Precipitation (Control simulation)

 Accumulated precipitation during the December 2005

Part I Result

Control simulation reproduces the heavy snowfall in terms of timing and distribution, but its amount was overestimated

Part II

Sensitivity Test

- Vertical Resolution (OBS_23Z, OBS_43Z, and OBS_63Z)

✓ Back ground

- Kim and Lee (2002, J. Korean Meteor. Soc.)- Differences in cumulus parameterization, planetary boundary layer schemes and initial condition do not affect the snowfall over the Korean peninsula.

- Byun (2006, to be submitted to Mon. Wea. Rev.) -WRF and MM5 simulate more snowfall associated with mass transformation irrespective of the horizontal resolution and microphysics scheme

✓ Summary of Experiments

OBS_23Z	Experiment with observed SST during December 2005
OBS_43Z	Same as in the OBS_23Z except for the number of 43 vertical grid
OBS_63Z	Same as in the OBS_23Z except for the number of 63 vertical grid

For reducing the model bias, designing a vertical resolution will be important in the snowfall simulation associated with air mass transformation during cold air break occur!!!

							Numerical S	Modeling La	boratory —
Vertical Resolution									
Change of Precipitation between 43 and 23lags between 43 and 43									
Pre	cipitation	Correlation	Bias Score	Average (mm)	Max Preci (mm)	Hear	Flux	LH	SH
	OBS_23Z	0.58 (0.63)	8.66 (2.98)	248.52 (134.8)	543		OBS_23Z	965.70 (514.83)	682.07 (354.50)
	OBS_43Z	0.57 (0.65)	6.95 (2.99)	221.45 (135.44)	519		OBS_43Z	965.27 (517.80)	694.85 (361.62)
	OBS_63Z	0.56 (0.65)	6.72 (2.92)	199.52 (132.39)	458		OBS_63Z	960.91 (514.26)	699.46 (349.35)
-	y Yonsei	university							

Part Ⅲ

Comparison with the results using the MM5 and RSM in the Regional Climate Simulation During the Winter time

Precipitation

MM5

RSM

	Bias Score	Averaged Rain (mm)	
WRF	3.95	130.72	
MM5	4.02	133.15	
RSM 3.46		118.05	

50N

40N

301

Sea Level Pressure

Domain averaged over 103E-155E/20N-52.5N

Snap Shots of Large Scale (SLP)

RA2

at 1200UTC 4 December

1004

WRF

Conclusion

Regional Climate modeling study during the winter season is conducted using the WRF model.

✓ The WRF model captures the formation of the observed heavy snowfall; however, its amount was overestimated.

✓The abnormal warm SST over the Yellow Sea in December 2005 is responsible for the formation of extreme snowfall over Korea by about 30 %

✓The configuration of vertical layer is very important in the simulation of heavy snowfall induced by air-mass transformation

✓ The WRF may have a sort of systematic bias in the simulation of regional climate over East Asia in wintertime

RSM

0000Z01 DEC

Yonsei university

Korea (whole domain)

	Correlation	Bias Score	Average (mm)
OBS_23Z	0.58(0.63)	14.25(2.98)	88.16(134.8)
CLM_23Z	0.55(0.76)	11.83(2.42)	73.21(109.43)

	Correlation	Bias Score	Average (mm)	Max Preci (mm)
OBS_23Z	0.58 (0.63)	14.25 (2.98)	88.16 (134.8)	543
OBS_43Z	0.57 (0.65)	13.55 (2.99)	83.86 (135.44)	519
OBS_63Z	0.56 (0.65)	13.16 (2.92)	81.43 (132.39)	458

