#### Advanced Research WRF Developments for Hurricane Prediction

Christopher Davis, Wei Wang, Yongsheng Chen, Kristen Corbosiero, Jimy Dudhia, Greg Holland, Joe Klemp, John Michalakes, Richard Rotunno, Chris Snyder, Qingnong Xiao

> National Center for Atmospheric Research Boulder, Colorado, USA

> > Mark DeMaria

NOAA NESDIS, Ft. Collins, Colorado, USA

And

Shuyi Chen

University of Miami, Miami, Florida, USA

# Advanced Research WRF

## Advanced Hurricane WRF

## AHW Configuration

- 2-way nested, vortex tracking grid at 4km, additional nest at 1.33 km
- No cumulus parameterization at 4 km or less.
- 12 km fixed grid nested into GFS, parameterized convection (Kain-Fritsch)
- 3-category cloud physics (no graupel), YSU PBL
- Initial conditions either GFS or GFDL

# 2005 Landfalling Cases Verified

#### TROPICAL STORM AND HURRICANE FORCE WIND SWATHS







#### **Results for 2005 Season**



(b)

(a)



## Wilma



## Key Areas Needing Improvement

- Flux Formulation
- Ocean Coupling
- Initialization
- Resolution of inner core dynamics

# Katrina

Post real-time tests

- Flux Parameterization
  - Fix u\* over water
  - Experiment with  $u^* (C_D)$
  - Experiment with  $C_{K}$
- Couple to mixed-layer ocean model
- EnKF and 3D-VAR initialization
- Add 1.33-km storm following domain



#### Katrina Forecasts

#### from 00 UTC 27 August

- •1.3 km captures part of rapid intensification
- •All forecasts intensify late (erroneously)
- •Obvious initialization problems (worse w/ GFS)
- •Answers depend on flux formulation



#### Surface Flux Experiments

D = Donelan Formulation
V2.1.2 = Charnock
D has less drag than V2.1.2
Less drag means
Larger eye
Stronger winds (usually)
Higher central pressure

# **Ocean Mixing**

-0.5

Comparison of OML and Full Ocean Y DISTANCE, km -200 -100 0 100 200 300 Models for Idealized Vortex ∆SST, °C Mixed Layer Model >.0.5 Delta T at t 48..... ..... -2 50 -2.000

Full Ocean Model Price (1981)

Maxima in both idealized calculations is 3.1 K

Katrina: 4-km grid



# Initialization

- Reduce model spinup (12 h)
- Improve intensity prediction < 2 days



## 10-m Wind Comparison



### Radial Wind Profile: Katrina





1 km EM-WRF -- NCAR/MMM Cd Test Init: 0000 UTC Sat 27 Aug 05 Fest: 30.00 h Valid: 0600 UTC Sun 28 Aug 05 (0200 EDT Sun 28 Aug 05) Max Reflectivity





Model Info: V2.1.2 M No Cu YSU PBL WSM Sclass Ther-Diff 1.3 km. 34 levels. 7 sec LW: RRTM SW: Dudhia DIFF: simple KM: 20 Smagor

#### Rainbands: Katrina



## Vorticity Profile: Katrina



## Conclusions

#### • Flux Formulation

- Apparently large sensitivity
- Controls eye size, pressure-wind relationship
- C<sub>K</sub> perhaps greatest unknown (and important!!)
- Ocean Coupling
  - Columnar mixed-layer model capture most short-term effects of full ocean model
  - Need to incorporate altimetry data to initialize ML depth
- EnKF promising as initialization method
- Sub-2-km grid spacing necessary for inner core
  - Issue of spurious Rossby waves (Katrina and Rita)
  - Width of eye wall?
  - Rainbands show less cellular character
- 12-km AHW surprisingly good so far: Is 4-km still "noman's land"?
- Verification methods are obsolete

#### 2006

#### http://www.wrf-model.org/plots/realtime\_main.php

