Impact of microphysics on hurricane track forecasts

Robert Fovell

University of California, Los Angeles

rfovell@ucla.edu

Trend in track errors

Houston before Rita

Source: Houston Chronicle

WRF ensemble

- WRF 2.1.2 and 2.0.3
- 30 km ensemble
 - Vary microphysics and cumulus schemes
- 12 km ensemble
 - No parameterized convection
 - Vary microphysics schemes
- Subgrid diffusion generally deactivated though also investigated

30 km ensemble results

Ensemble matrix

	NONE	KF2	BMJ	Grell
NONE				
Kessler				
LFO		Control		
WSM3				
WSM6				

Control run (KF2/LFO) landfall forecasts (10 m winds & SLP)

39h from 18 UTC 22 Sept 51h from 06 UTC 22 Sept

Control run (KF2/LFO) simulation started 06 UTC 22 Sept.

Control run (KF2/LFO)

KF2/Kessler run added

BMJ/WSM3 run added

30 km ensemble spread

30 km fallspeed experiment (VT = terminal velocity)

Original Kessler

Kessler with no fallspeed

Original WSM3

WSM3 with increased ice VT

"It takes two to tang[le]"

Parameterized vs. explicit convection

Control run (KF2/LFO) explicit and parameterized rainfall

explicit scheme

cumulus scheme

Combined precip largest west of track

NONE/LFO run (no convective parameterization)

Combined precip largest east of track

Less fallspeed sensitivity without cumulus parameterization

Kessler VT=0

Kessler unmodified

Changing VT altered explicit-cumulus interaction

12 km ensemble

(No convective scheme)

Vortex-following composites

- Based on SLP field
- Identified point maximizing north-south and east-west symmetry
- Construct composite fields, isolate asymmetric components

850 mb wind speed

Kessler

Absolute vorticity at 850 mb

Kessler

Absolute vorticity at 850 mb

WSM3

Vortex propagation

- Steering flow
- Vortex asymmetries
 - Beta effect
 - Other sources (convection, friction, etc.)
- Vortex tilt

Maximum vertical velocity

Kessler

Non-precipitating condensate

Kessler

LFO

240

Precipitating condensate

Kessler

Discussion

- Kessler scheme yields larger, weaker vortex
 - Greater westward displacement possibly due to enhanced beta effect
 - Vortex also shallower ~ different steering
 - Vortex slightly tilted to north
- LFO/WSM3 runs possessed...
 - Stronger updrafts
 - Concentrated in NE quadrant
 - Local vorticity increase from stretching
 - Self-propagation could favor more eastward path
- Source of difference?

Further discussion

- Track sensitive to microphysics in 30 & 12 km runs
 - Extend to other lead times, cases
- Suspect no "best" microphysical scheme
 - Possible compensation for other deficiencies (in input data, model physics, resolution, etc.)
- Possible microphysics provide efficient path to excite latent sensitivity

850 mb wind speed

WSM3

