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The MCV event of 10-12 June 2003 (IOP 8 of BAMEX)
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Two domains with grid sizes of 90 & 30 km; one-way nesting

Physical parameterizations: Grell-Devenyi cumulus scheme,
WSM 6-class microphysics with graupel, and YSU PBL

Data assimilation is only performed in D2

Model domain

Forecast Model: WRF2.1
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Ensemble Forecast in D2
Simulated reflectivity (colored) and MSLP (blue lines, every 2 hPa)
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Data to be assimilated



A sequential filter:   Whitaker and Hamill (2002),  Snyder and Zhang (2003)
Assimilated variables: u, v ,T, Q and Psfc (assuming observational errors of NCEP)
Ensemble size: 40
Ensemble generation: randomly sampled from 3Dvar background (Barker et al 2003)
Autoregressive coarse boundary perturbations: Torn and Hakim (2006)
Covariance relaxation to prior: Zhang et al. (2004)
Covariance localization: Gaspari and Cohn (1999)
Nearly identical to our MM5-based EnKF: Zhang et al. (2006)

A WRF-based Ensemble Kalman Filter (EnKF)

EnKF: Use ensemble forecast to estimate flow-dependent background error covariance
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WRF-3DVAR
(Barker et al. 2005)

Control variables: stream function, pseudo relative humidity,
unbalanced velocity potential, temperature, and surface pressure.

Background error covariance:
    cv3 – NCEP/GSI B from NMC method (default in current release)
    cv5 – NMC method but with WRF simulations through gen_be

Minimization: Conjugate gradient method

(Diagram copied from Dale Barker’s tutorial presentation) 



Sounding assimilation - cycling at 12h interval



Profiler assimilation - cycling at 3h interval



Surface observation assimilation
- Cycling at 3-h interval



Assimilation of Sounding+Surface+Profiler obs
 - Cycling at 3-h interval



MCV positions at 36h (00UTC Jun.12)
Observed radar echo, simulated reflectivity (colored)

 and MSLP (blue lines, every 2 hPa)
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3DVAR: Sensitivity to background error covariance B
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Implementing the concept of EnKF in 3DVAR



Implementing the concept of EnKF in 3DVAR

ENS_evolved_cv3: generate B using 12-h forecast ensemble; 3Dvar on prior from single forecast 
En3DVAR_cv3: generate B using 12-h forecast ensemble; 3Dvar analysis on ensemble mean
En3DVAR_full: generate B using 12-h forecast ensemble; 3Dvar analysis on each member



Concluding Remarks
 WRF/EnKF behaves well when assimilating real observations

 EnKF performs better than 3DVAR which uses the static
NCEP/GFS background error covariance (B) for this event

 The difference between EnKF and 3Dvar becomes smaller
when more observations are assimilated

 The difference between EnKF and 3DVAR becomes also
becomes smaller when 3DVAR derived more and more event-
based (‘flow-dependent’) B from the WRF simulations

 The 3DVAR performs similar to EnKF if using the ensemble
forecast to generate first guess and B

 3DVAR tends to have smaller analysis error (fits data better)
but have comparable or larger 12-h forecast error than EnKF

 The 3DVAR system is much more computationally efficient but
to generate case-dependent B can be costly and challenging
to many event-based users


