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The MCV event of 10-12 June 2003 (IOP 8 of BAMEX)
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Two domains with grid sizes of 90 & 30 km; one-way nesting

Physical parameterizations: Grell-Devenyi cumulus scheme,
WSM 6-class microphysics with graupel, and YSU PBL

Data assimilation is only performed in D2

Model domain

Forecast Model: WRF2.1
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Ensemble Forecast in D2
Simulated reflectivity (colored) and MSLP (blue lines, every 2 hPa)
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Data to be assimilated



A sequential filter:   Whitaker and Hamill (2002),  Snyder and Zhang (2003)
Assimilated variables: u, v ,T, Q and Psfc (assuming observational errors of NCEP)
Ensemble size: 40
Ensemble generation: randomly sampled from 3Dvar background (Barker et al 2003)
Autoregressive coarse boundary perturbations: Torn and Hakim (2006)
Covariance relaxation to prior: Zhang et al. (2004)
Covariance localization: Gaspari and Cohn (1999)
Nearly identical to our MM5-based EnKF: Zhang et al. (2006)

A WRF-based Ensemble Kalman Filter (EnKF)

EnKF: Use ensemble forecast to estimate flow-dependent background error covariance
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WRF-3DVAR
(Barker et al. 2005)

Control variables: stream function, pseudo relative humidity,
unbalanced velocity potential, temperature, and surface pressure.

Background error covariance:
    cv3 – NCEP/GSI B from NMC method (default in current release)
    cv5 – NMC method but with WRF simulations through gen_be

Minimization: Conjugate gradient method

(Diagram copied from Dale Barker’s tutorial presentation) 



Sounding assimilation - cycling at 12h interval



Profiler assimilation - cycling at 3h interval



Surface observation assimilation
- Cycling at 3-h interval



Assimilation of Sounding+Surface+Profiler obs
 - Cycling at 3-h interval



MCV positions at 36h (00UTC Jun.12)
Observed radar echo, simulated reflectivity (colored)

 and MSLP (blue lines, every 2 hPa)
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3DVAR: Sensitivity to background error covariance B
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Implementing the concept of EnKF in 3DVAR



Implementing the concept of EnKF in 3DVAR

ENS_evolved_cv3: generate B using 12-h forecast ensemble; 3Dvar on prior from single forecast 
En3DVAR_cv3: generate B using 12-h forecast ensemble; 3Dvar analysis on ensemble mean
En3DVAR_full: generate B using 12-h forecast ensemble; 3Dvar analysis on each member



Concluding Remarks
 WRF/EnKF behaves well when assimilating real observations

 EnKF performs better than 3DVAR which uses the static
NCEP/GFS background error covariance (B) for this event

 The difference between EnKF and 3Dvar becomes smaller
when more observations are assimilated

 The difference between EnKF and 3DVAR becomes also
becomes smaller when 3DVAR derived more and more event-
based (‘flow-dependent’) B from the WRF simulations

 The 3DVAR performs similar to EnKF if using the ensemble
forecast to generate first guess and B

 3DVAR tends to have smaller analysis error (fits data better)
but have comparable or larger 12-h forecast error than EnKF

 The 3DVAR system is much more computationally efficient but
to generate case-dependent B can be costly and challenging
to many event-based users


