



# Noah land-surface model used in the NCEP operational North American Mesoscale (NAM/WRF-NMM) model

### **NCEP/Land-Hydrology:**

Michael Ek, Ken Mitchell, Vince Wong, George Gayn

#### **NCEP/EMC/Mesoscale Modeling:**

Tom Black, Hui-ya Chuang, Geoff DiMego, Brad Ferrier, Zavisa Janjic, Dan Johnson, Ying Lin, Matt Pyle, Eric Rogers

# Noah land-surface model at NCEP

## linearized (non-iterative) surface energy budget

 Jarvis-Steward "big-leaf" canopy conductance for different land-use classes

- · intercepted canopy water
- · bare soil evaporation
- vegetation-reduced soil thermal conductivity

 multiple soil layers, with soil moisture diffusion and soil heat conduction eq'ns for different soil textures

#### · frozen soil processes

 single-layer snowpack, snow density, max snow albedo

#### patchy snow cover affect on surface fluxes

(Chen et al 1996, Schaake et al 1996, Koren et al 1999, Ek et al 2003)



ftp://ftp.emc.ncep.noaa.gov/mmb/gcp/ldas/noahlsm

• Noah LSM tested in various land-surface mode intercomparison projects, e.g., PILPS 2a, 2c, 2d, GSWP 1 & 2, Rhone, DMIP, GLACE.

# NAM/Eta to NAM/WRF-NMM transition: land-surface aspects

- Imbed NAM/Eta Noah LSM v2.7.1 in "nmmlsm (WRF land opt 99) ... "99% identical" with WRF land model opt 2, a.k.a. "unified Noah LSM"
- · WRF-NMM dynamic core
- MYJ surface layer & PBL
- BMJ convection
- Ferrier microphysics
- · GFDL radiation

7th WDE Hawa' Wankahan . Dauldan Calanada . 10 77 Inna 70

## WRF-NMM (NAMX) testing at NCEP/EMC

- · Real-time cycled parallel (January-May 2006)
- Summer retrospective (May through August 200 May, June "cycling/spinup" July, August free forecasts (84-hr)
- Special case study runs with EMC "WRF-launch Various warm & cold season runs, plus verificat and comparison with operational NAM/Eta

# NAM/Eta to NAM/WRF-NMM transition: land-surface aspects

Surface flux differences in Eta vs WRF-NMM:

- Same Noah LSM
- Surface roughness, surface layer & PBL change and height of lowest model layer (affect surface exchange coefficients)
- Cloud & radiation changes (affects radiation)
  Tests found a "glitch" in Eta LSM *driver* (yield greater surface evaporation, higher dew points), but *NOT* in WRF-NMM

7th WDE Hawa' Wankahan . Dauldan Calanada . 10 77 Inna 70

#### western CONUS, 2-meter air tem JUL-AUG 2005 JAN-MAY 200 30C NAM 🔊 NAMX 12C 25C **8**C 20C OBS **4**C

• NAMX: similar to NAM performance, with reduced daytime warm bias in summer.

24

48

forecast hour

72

72

24

 $\mathbf{0}$ 

48

forecast hour

7th WDE Hawa' Wanteshan . Davidon Colonado . 10 22 Inno 20

# eastern CONUS, 2-meter air tem



• NAMX: reduced daytime warm bias in summer slightly reduced nighttime cool bias in cool seasc

7th WDE Hawa' Wankahan . Davidan Calanada . 10 27 Inna 20



• NAMX: similar to NAM, with nighttime dry bia slightly reduced daytime moist bias in cool season

7th WDE Hand Wankahan . Dauldan Calanada . 10 77 Juna 70



• NAMX: similar to NAM in warm season, with reduced day/night moist bias in cool season.

7th WDE Hawa' Wankahan . Davidan Calanada . 10 77 Inna 70



• NAMX: slightly more low bias than NAM

7th WDE Hand Wankahan . Dauldan Calanada . 10 77 Juna 70



• NAMX: reduced high wind bias, especially coseason daytime.

7th WDE Hawa' Wanteshan . Davidon Colonado . 10 77 Inno 70

#### NAMX July 2005 monthly avg. mid-day latent heat



### July 2005 mean diurnal avg. latent heat flux



7th WDE Hannel Wankahan

Douldon Colonado . 10 77 Inno 70

# SUMMARY

- Realtime & retrospective parallel, and case study testing shows NAMX/WRF-NMM performance generally similar/some cases better than NAM/E1 • WRF-NMM: reduced summertime warm bias (2-m temps), similar/drier humidity (2-m RH) (no Eta "glitch"), lower 10-m winds (better in east, bu slightly worse in west).
  - Alaska (not shown):
  - cool season: reduced cool, moist, low wind bias, warm season: slightly degraded cool, moist, low wind bias.
  - Model fluxes compare favorably with flux site o
    - 7th WDE Hands Wantshan . Dauldan Calanada . 10 22 Inna 20

# FUTURE

### **Re-examine:**

- Surface roughness (momentum flux/10-m wind "digging" troughs).
- Surface layer parameterization, radiation/surfac emissivity (esp. cold season over snow, nighttime surface fluxes in stable boundary layer).
- · Shallow, cool, moist ABLs, e.g. Gulf Coast
- Transpiration processes/parameters
- Finish Noah LSM unification with NCAR, i.e. WRF land opt 2, "unified" Noah LSM (next slide

7th WDE Hand Warkshan . Dauldar Calarada . 10 77 Inna 70

# Noah LSM unification

LATENT HEAT FLUX PARA12NMM 06H FCST VALID 18Z 09 JUL 2005 LATENT HEAT FLUX PARA12NMM 06H FCST VALID 18Z 09 JU



-1000-800-800-400-300-200-100-50-25 0 25 50 75 100 150 200 350 Noah LSM v2.7.1



-1000-600-600-400-300-700-100-50-95 0 95 50 75 100 150 900 350 "Unified" Noah LSM

Latent heat fluxes *very* similar using Noah LSM v2.7.1 vs WRF "unified" Noah LSM *in WRF-NN* ("WRF launcher" run valid mid-day 09-July-2005)

7th WDE Hand Wantehan . Davidon Colonado . 10 77 Inno 70

#### land-surface - ABL - radiation interactions

