

A New Combined Local and Non-Local Boundary Layer Model: ACM2

Jonathan Pleim NOAA/ARL USEPA/ORD RTP, NC

Outline

- Model development
- 1-D testing and evaluation
 - Large Eddy Simulation (LES)
 - GABLS Experiment (CASES99)
- MM5 testing and evaluation
- WRF implementation will soon be ready

RESEARCH & DEVELOPMENT

Purpose

- Develop a simple PBL model that:
 - Produces realistic profiles in CBL
 - Accurate PBL heights
 - Appropriate for all stability conditions w/ minimal discontinuities
 - For both meteorology and chemistry models
 - Computationally efficient

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

- Local flux-gradient proportionality (i.e. Eddy diffusion) is not appropriate for Convective Boundary Layers
 - Upward heat flux penetrates to ~80% of h while potential temperature gradients are very small through most of the PBL
 - 2. Eddies in CBL are larger that vertical grid spacing (violates subgrid-scale assumption)
- Two common alternative approaches:

1. Gradient adjustment term:

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left(K_h \left(\frac{\partial \theta}{\partial z} - \gamma_h \right) \right)$$

Deardorff 1966, Troen and Mahrt 1986, Holstlag and Boville 1993, Noh et al. 2003

2. Transilent or non-local closure:

$$\frac{\partial \theta_i}{\partial t} = M_{ij} \theta_j$$

Stull 1984, Blackadar 1976, Pleim and Chang 1992

RESEARCH & DEVELOPMENT

Asymmetric Convective Model (ACM)

- Original ACM
 - Simple Transilient model
 - Rapid upward transport by convectively buoyant plumes
 - Gradual downward transport by compensatory subsidence
 - Part of the PX-LSM in MM5
- ACM2
 - Added eddy diffusion to ACM
 - Allows local mixing at all levels
 - More realistic (continuous) profiles in lower layers
 - Smooth transition from stable to unstable

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

(W)HZ

1-D experiments –

Variations in partitioning of local and non-local transport

RESEARCH & DEVELOPMETheta (K)

Non-local partitioning

- These tests suggest that the upper limit of f_{conv} should be about 50%
- An expression for f_{conv} can be derived from gradient adjustment models (e.g. Holstlag and Boville 1993) at top of surface layer:

$$f_{conv} = \left(1 + \frac{k^{-\frac{2}{3}}}{0.1a} \left(-\frac{h}{L}\right)^{-\frac{1}{3}}\right)^{-1}$$

RESEARCH & DEVELOPMENT

Non-local fraction (f_{conv}) as function of stability

RESEARCH & DEVELOPMENT

LES experiment low heat flux (Q* = 0.05 K m s-1), weak cap

RESEARCH & DEVELOPMENT

The second GABLS model intercomparison

- Multi-day Intercomparison of 23 PBL models for CASES99 field study
 - Given initial profiles
 - T_g time series
 - Constant geostrophic wind
 - Large scale subsidence
 - 2.5% of potential evaporation
 - P, z_o, z_T

RESEARCH & DEVELOPMENT

GABLS T-2m Intercomparison

RESEARCH & DEVELOPMENT

GABLS Experiment – Simulation of CASES99 October 22-24, 1999

GABLS Profile intercomparison

CASES99 profiles

RESEARCH & DEVELOPMENT

MM5 Evaluations

- Domain: 202 x 208 x 34 @ 12 km res
- Physics:
 - ACM2
 - PX LSM
 - KF2
 - Reisner 2
 - RRTM w/ Dudhia SW
- Data Assimilation:
 - Winds at all levels, T and q_v above PBL
 - Indirect soil moisture nudging
- July 13 August 18, 2004

RESEARCH & DEVELOPMENT

2 m Temperature Averaged over all NWS/FAA sites 7/15 – 8/18 2004

Mean Absolute Error Mean Bias

10 m Wind speed Averaged over all NWS/FAA sites 7/15 – 8/18 2004

Mean Absolute Error Mean Bias

RESEARCH & DEVELOPMENT

PBL Height from Radar wind Profilers (from Jim Wilczak)

Pittsburgh, PA

Concord, NH

RESEARCH & DEVELOPMENT

Conclusions

- ACM2 is a combination of local and non-local closure techniques
 - Similar capabilities to eddy diffusion w/ countergradient adjustment but more readily applicable to any quantity (e.g chemistry)
 - ACM2 produces more realistic near-ground profiles than ACM1
- LES and 1-D tests show accurate simulation of vertical profiles and PBL heights
- MM5 tests show good ground level performance and accurate PBL heights

RESEARCH & DEVELOPMENT

Non-local Mixing rates

Convective mixing rate derived by conservation of buoyancy flux:

$$\overline{M} = B_{1+\frac{1}{2}} / \left[\left(h - z_{1+\frac{1}{2}} \right) \left(\theta_{v1} - \theta_{v2} \right) \right]$$

Buoyancy flux at top of first layer defined by eddy diffusion:

$$B_{1+\frac{1}{2}} = K_{z}(z_{1+\frac{1}{2}}) \frac{(\theta_{v2} - \theta_{v1})}{\Delta z_{1+\frac{1}{2}}}$$
$$K_{z} = k \frac{u_{*}}{\phi(\frac{z_{s}}{L})} z(1 - z/h)^{2}; z_{s} = \min(z, 0.1h)$$

 $(\cap$

(a)

Where:

Thus, Convective mixing rate is a function of K_z but not a function of potential temperature gradient:

$$\overline{M} = \frac{K_z(z_{1+\frac{1}{2}})}{\Delta z_1 (h - z_{1+\frac{1}{2}})}$$

RESEARCH & DEVELOPMENT

Normalized heat flux and potential temperature profiles

RESEARCH & DEVELOPMENT

LES experiment low heat flux (Q* = 0.05 K m s-1), strong cap

RESEARCH & DEVELOPMENT

LES experiment high heat flux (Q* = 0.24 K m s-1), strong cap

Model equations

$$\frac{\partial C_{i}}{\partial t} = Mu C_{1} - Md_{i}C_{i} + Md_{i+1}C_{i+1}\frac{\Delta z_{i+1}}{\Delta z_{i}}$$

$$+ \frac{1}{\Delta z_{i}} \left(\frac{K_{i+\frac{1}{2}}(C_{i+1} - C_{i})}{\Delta z_{i+\frac{1}{2}}} + \frac{K_{i-\frac{1}{2}}(C_{i} - C_{i-1})}{\Delta z_{i-\frac{1}{2}}} \right)$$
where, $Md_{i} = Mu(h - z_{i-\frac{1}{2}})/\Delta z_{i}$

Mixing rates, all defined in terms of K_z and h_z , are partitioned into local and non-local components (f_{conv})

$$Mu = \frac{f_{conv}K_z(z_{1+\frac{1}{2}})}{\Delta z_1(h - z_{1+\frac{1}{2}})} \qquad \text{How to define} \\ f_{conv}?$$

$$K_i = K_z(z) \left(1 - f_{conv} \right)$$

RESEARCH & DEVELOPMENT

Comparison of ACM2, ACM1 and EDDYNL (based on HB93) for 05WC case

Profiles of sensible heat flux. Local, non-local, and total sensible heat flux compared to LES

kinematic heat flux (K-m/s)

RESEARCH & DEVELOPMENT

Model performance statistics for the 12 km MM5-ACM2 simulations over the period of July 13 – August 18, 2004

	T	q_{v}	WS	wd
Data count	398848	398848	398848	398848
Correlation	0.934	0.915	0.612	
MAE	1.42 K	1.14 g/kg	1.026 m/s	31.8 deg
MB	0.369 K	0.109 g/kg	-0.211 m/s	10.2 deg
Index of Ag	0.931	0.911	0.606	

RESEARCH & DEVELOPMENT

Near surface Temperature profile from CASES99 main tower

T (K)

RESEARCH & DEVELOPMENT

Wind speed bias segregated by Landuse

