

Results of Coupling the WRF-Chemistry Model with the SMOKE Emissions Processing/Modeling System

John N. McHenry, Carlie J. Coats, Jr., and Jeff Vukovich

Baron Advanced Meteorological Systems Candler, NC

7th WRF User's Workshop

Talk Outline

Background and Motivation
WRF-Chem SMOKE design concept
From SMOKE to SMOKE-RT for WRF
Case Study and Results
Conclusions and Acknowledgments

7th WRF User's Workshop

Background and Motivation

The WRF - Chemistry Model

Calls to the chemistry driver are in-lined within the WRF meteorological driver (using the EM (I.e. ARW) core)
Two choices in "legacy" chemical mechanisms:

RADM2, RACM [with or without aerosols (MADE - SORGAM)]

Photolysis is represented by the Madronich model
Convective transport is accounted for by a generalized Grell approach
Dry deposition is accounted for (Wesley)

Does not contain aqueous chemistry

7th WRF User's Workshop

Background and Motivation

The WRF 2.1 - Chemistry Model

Emissions Approach

-Online biogenic emissions:

• BEIS 3.11 or Guenther

All other emissions offline

-"single representative day" for point, area, and mobile

- sources combined in one 24 hour file
- July 15, 2004 used for all applications

Thus, the need for a more state-of-science emissions "module": SMOKE

7th WRF User's Workshop

WRF-CHEM SMOKE DESIGN CONCEPT

The Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling System

Computationally efficient state-of-the-art emissions modeling system

• Used by CMAQ, MAQSIP, MAQSIP-RT, CAMx, UAM, REMSAD

 Standardizing on inventory source order turns most emissions modeling computations into sparse matrix multiplications:

 Hundreds of times faster than data-processing style emissions modeling

7th WRF User's

Workshop

WRF-CHEM SMOKE DESIGN CONCEPT

- SMOKE Uses the EPA/MCNC/BAMS Models-3 I/O API (M3IO)
 - Gridded, observational, inventory, sparse matrix data types: definition, storage, arithmetic operations
 - Persistent file storage layered on top of *netCDF* and native-binary files with peripheral support for *GRIB* and other formats.
 - Communication/coordination layered on top of *PVM* (looks to the program just like file storage)
 - not just a file-format broker, rather, a full API (Applications Programming Interface)
 - High level data access routines, time-keeping, map transforms, utilities
- *M3IO* is now built into WRF and WRF-Chem, and can be used to both read and write native m3io data

WRF-CHEM SMOKE DESIGN CONCEPT

🖓 🖍 Baron Advanced Meteorological Systems

Met part of WRF-Chem provides meteorology data to SMOKE
SMOKE provides model-ready met-modulated emissions back to WRF-Chem (for all emissions typologies)

• Data exchange and interprocess scheduling are provided by the M3IO

7th WRF User's Workshop

From SMOKE to SMOKE-RT

SMOKE-RT for WRF-Chem

New implementation of met-modulated sub-models:

- Temporal submodels for biogenic, mobile, plume-rise
- Merge processor single-stage merge instead of multi-stage
- Parallelized (via OpenMP) and much more efficient (~ 5X)
- Modular design, now acts as a "time-stepped model"—OK for cooperating-process coupled modeling systems.
- Sub-Grid scale terrain height effects for biogenic, mobile, plume-rise, merge sub-models.

From SMOKE to SMOKE-RT

Mobile Time-Step Sub-Model

Completely new code

- New driver, UI, computational layers
- Prototype uses Mobile-5b emissions factors; update to Mobile-6 planned
- File-compatible with EPA model
- Uses TA, TAMAX₂₄, TAMIN₂₄ from WRF meteorology
- Includes lapse corrections for met-model terrain height error

7th WRF User's Workshop

From SMOKE to SMOKE-RT

Biogenics Time-Step Sub-Model

- New implementation of driver, UI code (much simpler task than the other three)
 - Arbitrary user-selected time step
 - Uses TA, QV, GSW from WRF with lapse corrections for WRF terrain height error
- BEIS3.12 biogenics modeling code
- Can work in either gridded mode or in landusetract mode
- Now OpenMP parallel

7th WRF User's Workshop

From SMOKE to SMOKE-RT

Plume Rise Time-Step Sub-Model

- New driver, UI layers
 - Arbitrary user-selected time step
 - Does not override user's run-specifications
 - Uses TA, QV, P, Z, U, V from met model
- Same Briggs-algorithm plume-rise module
- Stack height re-adjustment on basis of sub-grid scale terrain

Merge Sub-Model

Single-Stage merge program

- Supports multi-inventory merge
- Reads and combines *sparse-matrix files* for gridding, speciation, control, future/past projection
- Optionally reads layer fractions files
- Reads *time stepped source level* emissions files for area, point, mobile, biogenics, and *plume rise* files
- Applies matrices, layer fractions, plume rise to emissions, to produce *time stepped model ready emissions for <u>aerosol</u> and chemical species*
- Open-MP parallel for performance

7th WRF User's Workshop

CASE Study and Results

Late July-early August 2004 featured a modest ozone air quality event over much of the midand deep south:

This day chosen for comparison

7th WRF User's Workshop

CASE Study and Results

- WRF-Chem Namelist settings were configured as recommended by the WRF-Chem FAQ web-page; <u>aerosols were turned off</u>
- <u>Utilized standard WRF-Chem 27km "real-time" domain in</u> <u>use at FSL</u>
- Meteorological initial and boundary conditions were supplied by the WRF SI
- WRF-Chem was cold started on July 28 using background chemical profiles
- WRF-Chem was spun-up for five days using "vanilla" emissions only
- Spin-up was accomplished by self-cycling with the WRF-Chem version of "real.exe"

7th WRF User's Workshop

CASE Study and Results

Example "initial condition" SO2 concentrations after 5 day spin-up showing identical IC's for SMOKE and "vanilla" runs

WRF-SMOKE

WRF-Vanilla

🖓 🖍 Baron Advanced Meteorological Systems

7th WRF User's Workshop

DATA MINING

CASE Study and Results

• WRF-Chem Results for Aug 2, 2004:

- **SO2**
- SULF
- NO2
- -ISO
- PAN
- **O**3

 WRF-Chem initialized at 00z, run for 24 hours with "vanilla" emissions; then same period again with "SMOKE" emissions

7th WRF User's Workshop

CASE Study and Results: SO2 at 18z

WRF-SMOKE

WRF-Vanilla

7th WRF User's Workshop

CASE Study and Results: SO2:

*difference field at 18z (left); *difference time series for Ohio Valley (right)

TAN Baron Advanced Meteorological Systems

7th WRF User's Workshop

CASE Study and Results: Sulfate at 18z

WRF-SMOKE

WRF-Vanilla

7th WRF User's Workshop

CASE Study and Results: Sulfate (SMOKE) minus Sulfate (VANILLA) at 18z

7th WRF User's Workshop

The Seventh WRF User's Workshop, National Center for Atmospheric Research, June 21, 2006

CASE Study and Results: NO2 at 18z

WRF-SMOKE

WRF-Vanilla

7th WRF User's Workshop

CASE Study and Results: NO2:

*difference field at 18z (left); *difference time series for Houston metro (right)

7th WRF User's Workshop

The Seventh WRF User's Workshop, National Center for Atmospheric Research, June 21, 2006

CASE Study and Results: Isoprene at "24z"

WRF-SMOKE

WRF-Vanilla

7th WRF User's Workshop

CASE Study and Results: Isoprene Difference Field after 24 hours (left): Isoprene (SMOKE) minus Isoprene (VANILLA); **Difference time series (right)**

•

7th WRF User's Workshop

The Seventh WRF User's Workshop, National Center for Atmospheric Research, June 21, 2006

CASE Study and Results: PAN at 18z

WRF-SMOKE

WRF-Vanilla

7th WRF User's Workshop

BARNEL BARNA Advanced Meleonological Systems Environmental ModeLine Central ModeLine Central Data Mining Data Mining Meleonological Systems Data Mining

CASE Study and Results: PAN difference field (SMOKE minus VANILLA) at 18z

7th WRF User's Workshop

The Seventh WRF User's Workshop, National Center for Atmospheric Research, June 21, 2006

CASE Study and Results:O3 at 18z

WRF-SMOKE

WRF-Vanilla

Carlo Baron Advanced Meteorological Systems

7th WRF User's Workshop

CASE Study and Results:O3 difference field at 18z

7th WRF User's Workshop

The Seventh WRF User's Workshop, National Center for Atmospheric Research, June 21, 2006

CASE Study and Results: Regional O3 Difference fields at 18z

7th WRF User's Workshop

CASE Study and Results: Regional O3 Difference fields at 18z [DFW and Ohio Valley]

7th WRF User's Workshop

CASE Study and Results: Regional O3 Difference fields at 18z [Houston]

Carlo Baron Advanced Meteorological Systems

7th WRF User's Workshop

CASE Study and Results: Regional O3 Difference Time Series near DFW: note difference of nearly 20PPB

7th WRF User's Workshop

Conclusions

- SMOKE-RT has been implemented within the WRF-Chem
 2.1 modeling system
- Results of a 24hour sensitivity run show modest-to-verysignificant differences in all key primary and secondary species without aerosol consideration
- Results may have profound implications for the performance of WRF-Chem for both real-time forecast and case-study simulations in the future
 - (See, for example, Wilczak et al., 2006 submitted to JGR) in an ensemble study w/ 8 ozone forecast models, the authors found that "the greatest improvement in model skill can be achieved through improving spatial variations of the meteorological forecasts [sub-synoptic] as well improving local emissions variations....)

7th WRF User's Workshop

Acknowledgements

- Ken Schere of NOAA's Atmospheric Sciences Modeling Division (RTP, NC) for sponsoring this work
- George Grell and Steven Peckham of the Forecast Systems Lab for many useful discussions regarding WRF-Chem
- John Michelakes of NCARs MMM division for continuing discussions regarding the WRF software architecture

7th WRF User's Workshop

Contact Information

John N. McHenry Chief Scientist Baron Advanced Meteorological Systems 920 Main Campus Drive Suite 101 Raleigh, NC 27606

Email: john.mchenry@baronams.com Phone: 919-424-4443

Web: <u>http://www.baronams.com</u> Web: <u>http://www.baronservices.com</u>

7th WRF User's Workshop