Understanding Error in the Long-Term Simulation of Warm-Season Rainfall using the WRF model.

J.M. Done¹, L.R. Leung², B. Kuo¹

1 National Center for Atmospheric Research, Boulder, CO 2 Pacific Northwest National Laboratory, Richland, WA

Regional Climate Modeling

High resolution:

 more precise description of regional topographic forcings due to orography, land-sea contrasts and land surface characteristics.

• more precise description of smaller scale atmospheric phenomena such as mesoscale convection.

Low predictability of warm-season continental climate:
dominated by small-scale convection, surface hydrological processes and weak large-scale flow.

Objectives

- Identify and understand robust errors in long-term simulation of warm-season rainfall.
- Model physics versus Model set-up
- Implications of Internal Model Variability (IMV): small changes to initial conditions can result in climate variability due to nonlinearities in model physics and dynamics.
- Establish the WRF model as a valid tool for Regional Climate Research.

Model Details

- Single domain: 30km grid-spacing; 35 vertical levels.
- Initial, lateral and lower boundary conditions provided by the NCEP NCAR Reanalysis Project (NNRP): 2.5°, 6-hourly.
- Sea surface temperature (SST), vegetation fraction and albedo are updated every 6 hours.
- Physics parameterizations
 - Noah land surface and YSU boundary layer
 - Kain-Fritsch convection
 - WSM-6 microphysics
 - CAM radiation: includes aerosol effects and updated O₃

Simulations

- 6-year climate simulation initialized at 00 UTC 1st Jan 1988.
 large domain
- Physics sensitivity experiments. Initialized using restart file on 1st June 1993 (Summer Flood).
 - Convection,
 - Radiation,
 - Cloud Fraction.
- Domain size.
- Initial Conditions.

6-Year Average Warm-Season 2m Temperature

Interannual Variability of Precipitation

• Reasonable simulation

Physics Sensitivity Experiments

Data	Change	Flood-Region Average Rainfall Jul 93 (mm/day)	% Rainfall From Convection Scheme
WRF	Default Model Set-Up	3.19	75
WRF	Betts-Miller Convection	3.66	16
WRF	Grell-Devenyi Convection	5.33	48
WRF	RRTM/Goddard Radiation	3.91	77
WRF	0/1 Cloud Fraction	2.81	72
Obs	-	7.43	-

- Generally low sensitivity to physics
- Exception: Grell-Devenyi convection

Sensitivity to Domain Size I

Large Domain: 150 X 300 Small Domain: 140 X 200

- Small domain initialized on 1st June 1993 using:
- NCEP-NCAR Reanalyses: Atmosphere
- WRF restart soil conditions from the large-domain 6-year simulation.

Domain	Flood region rainfall July 1993 (mm/day)
Large	3.19
Small	1.71

Bias Patterns in the Large-Scale Flow

- Bias pattern very different using different domain sizes
- Bias pattern very similar using different physics (not shown).
- Bias pattern determined by domain size rather than physics.
- Possible to get improved rainfall under similar large-scale pattern, as evidenced by the simulation using Grell-Devenyi convection.

300mb Geopotential height bias for July 1993

Caution: Internal Model Variability (IMV)

- IMV: Function of season, domain size, domain location and analysis variable
- IMV is largest for warm-season rainfall over continental regions using a large domain.

Initial Condition Experiment:

- Large domain initialized on 1st June 1993 using:
- NCEP-NCAR atmosphere

- WRF restart soil conditions from the 6-year simulation.

 Difference in warm-season rainfall total due to IMV is similar to the difference due to changes in physics or domain size.

July 1993 Rainfall (mm/day)

Caution: Internal Model Variability (IMV)

- Atmospheric spin-up: 10-12 days.
- RMSE alternates between the two simulations. Variability on synoptic timescales.
- Substantial impact of IMV on individual weather events. Impacts spatial distribution of warmseason rainfall.

Summary

- All climate simulations (different physics, domain size, initial conditions and year) show a lack of warm-season rainfall over the central U.S.
- Large-scale height bias largely determined by domain size.
- Rainfall determined by physics, domain size and IMV.
- Internal Variability in a Regional Climate Model is significant for warm-season rainfall over the central U.S. Implications for climate sensitivity studies.